Subscribe to RSS
DOI: 10.1055/s-0034-1385796
Noninvasive Imaging of Acute Renal Allograft Rejection by Ultrasound Detection of Microbubbles Targeted to T-lymphocytes in Rats
Ultraschall-basierte Diagnostik der akuten Nierentransplantatrejektion mittels Antikörper-markierter Microbubbles und humaner T-Lymphozyten im RattenmodellPublication History
04 March 2014
08 November 2014
Publication Date:
28 April 2015 (online)
Abstract
Purpose: We propose CD3-antibody-mediated contrast-enhanced ultrasonography using human T-lymphocytes for image-based diagnosis of acute allograft rejection (AR) established in a rat renal transplantation model.
Materials and Methods: 15 minutes after tail vein injection of 30 × 106 human T-lymphocytes, contrast media/microbubbles conjugated with an anti-human CD3 antibody was applied to uni-nephrectomized 10-week-old allogeneically transplanted male rats (Lewis-Brown Norway (LBN) to Lewis, aTX) and ultrasound was performed to investigate the transplanted kidney as well as the native kidney. In vivo results were confirmed via immunohistochemical stainings of CD3 after post mortem dissection. Syngeneically transplanted rats (LBN to LBN, sTX), rats with ischemia/reperfusion injury (IRI, 45 min. warm ischemia), and rats subjected to acute cyclosporin A toxicity (CSA) (cyclosporine 50 mg/kg BW for 2 days i. p.) served as controls.
Results: Accumulation of human T-lymphocytes was clearly detected by antibody-mediated sonography und was significantly increased in allografts undergoing AR (5.41 ± 1.32 A. U.) when compared to native control kidneys (0.70 ± 0.08 A. U.). CD3 signal intensity was low in native kidneys, sTX (0.99 ± 0.30 A. U.), CSA (0.10 ± 0.02 A. U.) and kidneys with IRI (0.46 ± 0.29 A. U.). Quantification of the ultrasound signal correlated significantly with the T-cell numbers obtained by immunohistochemical analysis (R2 = 0.57).
Conclusion: Contrast-enhanced sonography using CD3-antibodies is an option for quick and highly specific assessment of AR in a rat model of renal transplantation.
Zusammenfassung
Ziel: Evaluation des Kontrastmittel-gestützten Ultraschalls unter Verwendung humaner T-Lymphozyten und anti-CD3-markierter Microbubbles zur Detektion und Differentialdiagnostik der akuten renalen Abstoßung im Transplantationsmodell der Ratte.
Material und Methoden: 30 × 106 humane T-Zellen wurden uninephrektomierten, allogen nierentransplantierten Ratten (LBN auf Lewis) am 4. postoperativen Tag (POD4) injiziert. 15 min später erfolgte die i. v. Gabe humanspezifischer anti-CD3 Antikörper-markierter Microbubbles. Die Akkumulation humaner T-Zellen und gebundener Microbubbles wurde mittels Kleintierultraschall im Nierentransplantat und der Kontrollniere festgestellt und quantifiziert. Als Differentialdiagnose dienten syngen transplantierte Nieren (LBN auf LBN), Nieren mit warmem Ischämie/Reperfusionsschaden und Nieren mit akuter Calcineurin-inhibitortoxizität. Die Signalstärke der Ultraschallmessung wurde mit der Nierenhistologie (Banff Score, CD3 Färbung) korreliert.
Ergebnisse: Ratten mit akuter Abstoßung zeigten am POD4 eine signifikante Akkumulation humaner T-Zellen und Microbubbles in der allogenen Transplantatniere (5,41 ± 1,32 A. U., p < 0,05, n = 4 – 10 in allen Gruppen) im Vergleich zur gesunden Eigenniere (0,70 ± 0,08 A. U.). Syngen transplantierte Nieren ohne Rejektion (0,99 ± 0,30 A. U.), Nieren mit akuter Cyclosporin A Toxizität (0,10 ± 0,02 A. U.), bzw. akutem Ischämie/Reperfusionsschaden (0,46 ± 0,29 A. U.) wiesen keine erhöhte Anhäufung auf. Die Signalstärke des kontrastmittelgestützten Ultraschalls korrelierte in allen Nierenschädigungsmodellen signifikant mit der histologischen Quantifizierung des inflammatorischen Infiltrates.
Schlussfolgerungen: Mithilfe von T-Zellen und Antikörper-markierter Microbubbles ermöglicht die Kontrastmittel-gestützte Sonographie eine frühe und spezifische Diagnose der akuten Nierentransplantatabstoßung.
* Contributed equally
-
References
- 1 Grabner A, Kentrup D, Edemir B et al. PET with 18F-FDG-Labeled T Lymphocytes for Diagnosis of Acute Rat Renal Allograft Rejection. Journal of Nuclear Medicine 2013; 54: 1147-1153 DOI: 10.2967/jnumed.112.109231..
- 2 Rush D. Protocol transplant biopsies: an underutilized tool in kidney transplantation. Clin J Am Soc Nephrol 2006; 1: 138-143 DOI: 10.2215/CJN.00390705.
- 3 Racusen LC, Solez K, Colvin RB et al. The Banff 97 working classification of renal allograft pathology. Kidney Int 1999; 55: 713-723 DOI: 10.1046/j.1523-1755.1999.00299.x.
- 4 Bettinger T, Bussat P, Tardy I et al. Ultrasound molecular imaging contrast agent binding to both E- and P-selectin in different species. Invest Radiol 2012; 47: 516-523 DOI: 10.1097/RLI.0b013e31825cc605.
- 5 Morath C, Ritz E, Zeier M. Protocol biopsy: what is the rationale and what is the evidence?. Nephrology Dialysis Transplantation 2003; 18: 644-647 DOI: 10.1093/ndt/gfg036.
- 6 Schlosser T, Pohl C, Kuntz-Hehner S et al. Echoscintigraphy: a new imaging modality for the reduction of color blooming and acoustic shadowing in contrast sonography. Ultrasound Med Biol 2003; 29: 985-991
- 7 Chapman JR. Do protocol transplant biopsies improve kidney transplant outcomes?. Current Opinion in Nephrology and Hypertension 2012; 21: 580-586 DOI: 10.1097/MNH.0b013e32835903f4.
- 8 Solez K, Colvin RB, Racusen LC et al. Banff 07 Classification of Renal Allograft Pathology: Updates and Future Directions. Am J Transplant 2008; 8: 753-760 DOI: 10.1111/j.1600-6143.2008.02159.x.
- 9 Schwarz A, Hiss M, Gwinner W et al. Course and relevance of arteriovenous fistulas after renal transplant biopsies. Am J Transplant 2008; 8: 826-831 DOI: 10.1111/j.1600-6143.2008.02160.x.
- 10 El-Mekresh M, Osman Y, Ali-El-Dein B et al. Urological complications after living-donor renal transplantation. BJU Int 2001; 87: 295-306
- 11 Feige JN, Sage D, Wahli W et al. PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 2005; 68: 51-58 DOI: 10.1002/jemt.20215.
- 12 Muthukumar T, Dadhania D, Ding R et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 2005; 353: 2342-2351 DOI: 10.1056/NEJMoa051907.
- 13 Suthanthiran M, Schwartz JE, Ding R et al. Urinary-Cell mRNA Profile and Acute Cellular Rejection in Kidney Allografts. N Engl J Med 2013; 369: 20-31 DOI: 10.1056/NEJMoa1215555.
- 14 Meier-Kriesche HU, Schold JD, Srinivas TR et al. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 2004; 4: 378-383
- 15 Cosgrove DO, Chan KE. Renal transplants: what ultrasound can and cannot do. Ultrasound Q 2008; 24 (02) 77-87; quiz 141-2 DOI: 10.1097/RUQ.0b013e31817c5e46.
- 16 Opelz G, Döhler B. Collaborative Transplant Study Report. Influence of time of rejection on long-term graft survival in renal transplantation. Transplantation 2008; 85: 661-666 DOI: 10.1097/TP.0b013e3181661695.
- 17 Radermacher J, Mengel M, Ellis S et al. The renal arterial resistance index and renal allograft survival. N Engl J Med 2003; 349: 115-124 DOI: 10.1056/NEJMoa022602.
- 18 Mehrsai A, Salem S, Ahmadi H et al. Role of resistive index measurement in diagnosis of acute rejection episodes following successful kidney transplantation. Transplant Proc 2009; 41: 2805-2807 DOI: 10.1016/j.transproceed.2009.07.050.
- 19 El Ters M, Grande JP, Keddis MT et al. Kidney Allograft Survival After Acute Rejection, the Value of Follow-Up Biopsies. American Journal of Transplantation 2013; 13: 2334-2341 DOI: 10.1111/ajt.12370.
- 20 Grzelak P, Szymczyk K, Strzelczyk J et al. Perfusion of kidney graft pyramids and cortex in contrast-enhanced ultrasonography in the determination of the cause of delayed graft function. Ann Transplant 2011; 16: 48-53
- 21 Benozzi L, Cappelli G, Granito M et al. Contrast-enhanced sonography in early kidney graft dysfunction. Transplant Proc 2009; 41: 1214-1215 DOI: 10.1016/j.transproceed.2009.03.029.
- 22 Cornell LD, Smith RN, Colvin RB. Kidney transplantation: mechanisms of rejection and acceptance. Annu Rev Pathol 2008; 3: 189-220 DOI: 10.1146/annurev.pathmechdis.3.121806.151508.
- 23 Rosenblum JM, Shimoda N, Schenk AD et al. CXC Chemokine Ligand (CXCL) 9 and CXCL10 Are Antagonistic Costimulation Molecules during the Priming of Alloreactive T Cell Effectors. The Journal of Immunology 2010; 184: 3450-3460 DOI: 10.4049/jimmunol.0903831.
- 24 Nankivell BJ, Alexander SI. Rejection of the kidney allograft. N Engl J Med 2010; 363 (15) 1451-1462 DOI: 10.1056/NEJMra0902927.
- 25 Lindner JR. Molecular imaging of cardiovascular disease with contrast-enhanced ultrasonography. Nat Rev Cardiol 2009; 6 (07) 475-481 DOI: 10.1038/nrcardio.2009.77.
- 26 Reuter S, Schnöckel U, Schröter R et al. Non-Invasive Imaging of Acute Renal Allograft Rejection in Rats Using Small Animal 18F-FDG-PET. PLoS ONE 2009; 4: e5296 Zoccali C, ed. DOI: 10.1371/journal.pone.0005296.t003.
- 27 Grabner A, Kentrup D, Schnöckel U et al. Non-invasive Imaging of Acute Allograft Rejection after Rat Renal Transplantation Using 18F-FDG PET. JoVE 2013; DOI: doi:10.3791/4240.
- 28 Reuter S, Velic A, Edemir B et al. Protective role of NHE-3 inhibition in rat renal transplantation undergoing acute rejection. Pflugers Arch 2008; 456: 1075-1084 DOI: 10.1007/s00424-008-0484-7.
- 29 Reuter S, Schnöckel U, Edemir B et al. Potential of Noninvasive Serial Assessment of Acute Renal Allograft Rejection by 18F-FDG PET to Monitor Treatment Efficiency. Journal of Nuclear Medicine 2010; 51: 1644-1652 DOI: 10.2967/jnumed.110.078550.
- 30 Perico N, Cattaneo D, Sayegh MH et al. Delayed graft function in kidney transplantation. Lancet 2004; 364 (9447) 1814-1827 DOI: 10.1016/S0140-6736(04)17406-0.
- 31 Kondo I. Leukocyte-Targeted Myocardial Contrast Echocardiography Can Assess the Degree of Acute Allograft Rejection in a Rat Cardiac Transplantation Model. Circulation 2004; 109 (08) 1056-1061 DOI: 10.1161/01.CIR.0000115586.25803.D5.
- 32 Weller GER, Lu E, Csikari MM et al. Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation 2003; 108: 218-224 DOI: 10.1161/01.CIR.0000080287.74762.60.
- 33 Fischer T, Dieckhöfer J, Mühler M et al. The use of contrast-enhanced US in renal transplant: first results and potential clinical benefit. Eur Radiol Suppl 2005; 15 (Suppl. 05) e109-e116 DOI: 10.1007/s10406-005-0173-y.
- 34 Peters AM, Danpure HJ, Osman S et al. Clinical experience with 99mTc-hexamethylpropylene-amineoxime for labelling leucocytes and imaging inflammation. Lancet 1986; 2: 946-949
- 35 Dumarey N. Imaging with FDG labeled leukocytes: is it clinically useful?. Q J Nucl Med Mol Imaging 2009; 53: 89-94
- 36 Doudet DJ, Cornfeldt ML, Honey CR et al. PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson's disease. Exp Neurol 2004; 189: 361-368 DOI: 10.1016/j.expneurol.2004.06.009.
- 37 Forstrom LA, Dunn WL, Mullan BP et al. Biodistribution and dosimetry of [(18)F]fluorodeoxyglucose labelled leukocytes in normal human subjects. Nucl Med Commun 2002; 23: 721-725
- 38 Claudon M, Dietrich C, Choi B et al. Guidelines and Good Clinical Practice Recommendations for Contrast Enhanced Ultrasound (CEUS) in the Liver – Update 2012. Ultraschall in Med 2013; 34: 11-29 DOI: 10.1055/s-0032-1325499.
- 39 Dietrich C, Averkiou M, Correas JM et al. An EFSUMB Introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for Quantification of Tumour Perfusion. Ultraschall in Med 2012; 33: 344-351 DOI: 10.1055/s-0032-1313026.