Aktuelle Rheumatologie 2014; 39(06): 384-392
DOI: 10.1055/s-0034-1384553
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Advanced glycation endproducts (AGEs) und Vitamin D – antagonistische Prinzipien im Knochenstoffwechsel?

Advanced Glycation Endproducts (AGEs) and Vitamin D – Antagonistic Principles in Bone Metabolism?
P. Oelzner
1   Klinik für Innere Medizin III, Universitätsklinikum Jena, Jena
,
S. Franke
1   Klinik für Innere Medizin III, Universitätsklinikum Jena, Jena
,
G. Wolf
1   Klinik für Innere Medizin III, Universitätsklinikum Jena, Jena
› Author Affiliations
Further Information

Publication History

Publication Date:
17 December 2014 (online)

Zusammenfassung

Der physiologische Knochenumbau dient der Anpassung des Knochens an mechanische Belastung und gewährleistet die Stabilität des Skeletts. Differenzierung und Funktion der am Knochenumbau beteiligten Zellen werden durch eine Vielzahl von Hormonen, Zytokinen und anderen Faktoren reguliert. Zu diesen Substanzen zählen u. a. advanced glycation endproducts (AGEs) und Vitamin D. Verschiedene Befunde weisen auf antagonistische Funktionen von AGEs und Vitamin D im Knochenstoffwechsel hin. Die Differenzierung von Osteoblasten sowie die Expression osteogener Marker werden durch AGEs gehemmt und durch Vitamin D stimuliert. In diesem Zusammenhang sind inhibitorische Effekte von AGEs auf die für die Osteoblasten-Differenzierung bedeutsamen Transkriptionsfaktoren Runx2 und Osterix sowie auf den Wnt-Signalweg von Bedeutung. Vitamin D hat dagegen einen stimulierenden Einfluss auf die Expression der genannten Transkriptionsfaktoren sowie das Wnt-Signaling. AGEs hemmen die Knochenmineralisation, während Vitamin D insbesondere vor dem Hintergrund einer chronischen Inflammation die Mineralisation fördert. Die Effekte von AGEs und Vitamin D auf die Knochenresorption sind komplex. Die Induktion von RANKL in Osteoblasten durch AGEs, eine reduzierte Knochenresorption in AGE-defizienten Mäusen und die Abnahme der RANKL/OPG-Ratio im Rahmen der Vitamin D-stimulierten Osteoblasten-Differenzierung als auch komplexe Effekte von Vitamin D auf Osteoklasten-Differenzierung und das RANK-Signaling sprechen für eine Steigerung der Knochenresorption durch AGEs und eine Hemmung derselben durch Vitamin D. Antagonistische Wirkungen von AGEs und Vitamin D gewinnen auch durch die Koinzidenz von AGE-Akkumulation und Vitamin D-Mangel im höheren Lebensalter sowie bei verschiedenen Erkrankungen wie Osteoporose, Rheumatoider Arthritis, Diabetes mellitus und chronischer Niereninsuffizienz klinische Bedeutung. Ferner gibt es Hinweise für direkte Interaktionen der AGE- und Vitamin D-assoziierten Signalwege. Wir konnten in Untersuchungen an humanen Osteoblasten nachweisen, dass antiosteogene Effekte von AGEs durch Vitamin D-Hormon komplett antagonisiert werden. Dabei sind wahrscheinlich komplexe Effekte von Vita­min D-Hormon auf das RAGE-NFκB-vermittelte Signaling von Bedeutung. In der folgenden Übersicht soll auf die potentiell antagonistischen Effekte von AGEs und Vitamin D im Knochenstoffwechsel eingegangen und die klinische Bedeutung dieser Interaktionen herausgearbeitet werden.

Abstract

Physiological bone remodelling is of critical importance for adaptation of bone to mechanical load and ensures the stability of the skeleton. Differentiation and function of cells involved in bone remodelling are regulated by a variety of hormones, cytokines and other factors. Both advanced glycation endproducts (AGEs) and vitamin D belong to these substances. Various data indicate an antagonistic function of AGEs and vitamin D in bone remodelling. The differentiation of osteoblasts and the expression of osteogenic markers is inhibited by AGEs and stimulated by vitamin D. In this context, inhibitory effects of AGEs on transcription factors important for differentiation of osteoblasts such as Runx2 and Osterix as well as on wnt-signalling are of significance, whereas vitamin D promotes the expression of these transcription factors and the wnt-signalling. The mineralisation process of the bone is inhibited by AGEs but augmented by vitamin D, especially against the backdrop of chronic inflammation. The effects of AGEs and vitamin D on bone resorption are complex. The induction of RANKL in osteoblasts by AGEs, a reduced bone resorption in AGE-deficient mice and the decrease of the RANKL/OPG-ratio due to vitamin D driven differentiation of osteoblasts as well as complex effects of vitamin D on differentiation of osteoclasts and on RANK-signalling are in accordance with a stimulation of bone resorption by AGEs and with an antiresorptive effect of vitamin D. Antagonistic effects of AGEs and vitamin D gain clinical significance by the coincidence of AGE accumulation and vitamin D deficiency in older age and in various diseases such as osteoporosis, rheumatoid arthritis, diabetes and chronic renal failure. Furthermore, some findings indicate direct interactions between AGE- and vitamin D-associated signalling. We were able to demonstrate that anti-osteogenic effects of AGEs on human osteoblasts are completely prevented by vitamin D hormone. Complex effects of vitamin D hormone on RAGE-NFκB-signalling are probably of critical significance in this process. The following overview is focused on potential antagonistic effects of AGEs and vitamin D in bone metabolism including the clinical significance of these interactions.

 
  • Literatur

  • 1 Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int 2014; 94: 25-34
  • 2 Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 2014; 3: 481 DOI: 10.1038/bonekey.2013.215.
  • 3 Nakashima T, Takayanagi H. Osteoimmunology: Crosstalk between the immune and bone systems. J Clin Immunol 2009; 29: 555-567
  • 4 Maillard-Lefebvre H, Boulanger E, Daroux M et al. Soluble receptor for Advanced glycation end products: a new biomarker in diagnosis and prognosis in chronic inflammatory diseases. Rheumatology 2009; 48: 1190-1196
  • 5 Hein G, Weiss C, Lehmann G et al. Advanced glycation end product modification of bone proteins and bone remodelling. Hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis 2006; 65: 101-104
  • 6 Franke S, Siggelkow H, Wolf G et al. Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem 2007; 113: 154-161
  • 7 Franke S, Rüster C, Pester J et al. Advanced glycation end products affect growth and function of osteoblasts. Clin Exp Rheumatol 2011; 29: 650-660
  • 8 Yan W, Li X. Impact of diabetes and its treatments on skeletal diseases. Front Med 2013; Epub ahead of print
  • 9 Del Turco S, Basta G. An update on advanced glycation endproducts and atherosclerosis. Biofactors 2012; 38: 266-274
  • 10 Oelzner P, Franke S, Hofmann G et al. Active vitamin D prevents anti-osteogenic effects of AGEs on human osteoblasts. Osteologie 2013; 22: 129-135
  • 11 Tanaka K, Yamaguchi T, Kaji H et al. Advanced glycation end products suppress osteoblastic differentiation of stromal cells by activating endoplasmatic reticulum stress. Biochem Biophys Res Commun 2013; 438: 463-467
  • 12 Okazaki K, Yamaguchi T, Tanaka K et al. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing apoptosis. Calcif Tissue Int 2012; 91: 286-296
  • 13 Suh KS, Choi EM, Rhee SY et al. Methyglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells. Free Radic Res 2014; 48: 206-217
  • 14 Li G, Xu J, Li Z. Receptor for advanced glycation end products inhibits proliferation in osteoblasts through suppression of Wnt, PI3K and ERK signaling. Biochem Biophys Res Commun 2012; 423: 684-689
  • 15 Gangoiti MV, Cortizo AM, Arnol V et al. Opposing effects of bisphosphonates and advanced glycation end products on osteoblastic cells. Eur J Pharmacol 2008; 600: 140-147
  • 16 Fernandez JM, Molinuevo MS, Sedlinsky C et al. Strontium ranelate prevents the deleterious action of advanced glycation end products on osteoblastic cells via calcium channel activation. Eur J Pharmacol 2013; 706: 41-47
  • 17 Aoki C, Uto K, Honda K et al. Advanced glycation end products suppress lysyl oxidase and induce bone collagen degradation in a rat model of renal osteodystrophy. Lab Invest 2013; 93: 1170-1183
  • 18 Ogawa N, Yamaguchi T, Yano S et al. The combination of high glucose and advanced glycation end products (AGEs) inhibits mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res 2007; 39: 871-875
  • 19 Karim L, Vashishth D. Heterogeneous glycation of cancellous bone and its association with bone qualitiy and fragility. PloS One 2012; DOI: 10.1371/journal.pone.0035047.
  • 20 Nyman JS, Makowski AJ. The contribution of the extracellular matrix to the fracture resistance of bone. Curr Osteoporos Rep 2012; 10: 169-177
  • 21 Saito M, Marumo K. Bone quality in diabetes. Front Endocrinol 2013; DOI: 10.3389/fendo.2013.00072.
  • 22 Dong XN, Qin A, Xu J et al. In situ accumulation of advanced glycation end products (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone 2011; 49: 174-183
  • 23 Ding KH, Wang ZZ, Hamrick MW et al. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 2006; 340: 1091-1097
  • 24 Grevers LC, de Vries TJ, Vogl T et al. S100A8 enhances osteoclastic bone resorption in vitro through activation of toll-like receptor 4: implications for bone destruction in antigen-induced arthritis. Arthritis Rheum 2011; 63: 1365-1375
  • 25 Valcourt U, Merle B, Gineyts E et al. Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem 2007; 282: 5691-5703
  • 26 Atkins GJ, Anderson PH, Findlay DM et al. Metabolism of vitamin D3 in osteoblasts: Evidence for autocrine and paracrine activities of 1alpha,25-dihydroxyvitamn D3. Bone 2007; 40: 1517-1528
  • 27 St Arnaud R. The direct role of vitamin D on bone homeostasis. Arch Biochem Biophys 2008; 473: 225-230
  • 28 Siggelkow H, Rebenstorff K, Kurre W et al. Development of the osteoblast phenotype in primary human osteoblasts in culture: comparison with rat calvarial cells in osteoblast differentiation. J Cell Biochem 1999; 75: 22-35
  • 29 Van Driel M, Koedam M, Buurman CJ et al. Evidence that both 1alpha,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization. J Cell Biochem 2006; 99: 922-935
  • 30 Maetaha Y, Takamizawa S, Ozawa S et al. Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentia­tion of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Matrix Biol 2006; 25: 47-58
  • 31 Baldock PA, Thomas GP, Hodge JM et al. Vitamin D action and regulation of bone remodelling: suppression of osteoclastogenesis by the mature osteoblast. J Bone Miner Res 2006; 21: 1618-1626
  • 32 Paredes R, Arriagada G, Cruzat F et al. Bone specific transcription factor Runx2 interacts with the 1alpha,25-dihydroxyvitamin D3 receptor to up-regulate rat osteocalcin gene expression in osteoblastic cells. Mol Cell Biol 2004; 24: 8847-8861
  • 33 Fretz JA, Zella LA, Kim S et al. 1,25-dihydroxyvitamin D3 induces expression of the wnt signalling co-regulator LRP5 via regulatory elements located significantly downstream of the gene̓s transcriptional start site. J Steroid Biochem Mol Biol 2007; 103: 440-445
  • 34 Cianferotti L, Demay MB. VDR-mediated inhibition of DKK-1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J Cell Biochem 2007; 101: 80-88
  • 35 Anderson PH, Atkins GJ, Findlay DM et al. RNAi-mediated silencing of CYP27B1 abolishes 1,25(OH)2D3 synthesis and reduces osteocalcin and CYP24 mRNA expression in human osteosarcoma (HOS) cells. J Steroid Biochem Mol Biol 2007; 103: 601-605
  • 36 Anderson PH, Atkins GJ, Turner AG et al. Vitamin D metabolism within bone cells: effects on bone structure and strength. Mol Cell Endocrinol 2011; 347: 42-47
  • 37 Yang D, Atkins GJ, Turner AG et al. Differential effects of 1,25-dihydroxyvitamin D on mineralisation and differentiation in two different types of osteoblast-like cultures. J Steroid Biochem Mol Biol 2013; 136: 166-170
  • 38 Need AG, Horowitz M, Morris HA et al. Seasonal change in osteoid thickness and mineralization lag time in ambulant patients. J Bone Miner Res 2007; 22: 757-761
  • 39 Erben RG, Scutt AM, Miao D et al. Short-term treatment of rats with high dose 1,25-dihydroxyvitamin D3 stimulates bone formation and increases the number of osteoblast precursor cells in bone marrow. Endocrinology 1997; 138: 4629-4635
  • 40 Lempert UG, Minne HW, Albrecht B et al. 1,25-dihydroxyvitamin D3 prevents the decrease of bone mineral appositional rate in rats with inflammation-mediated osteopenia (IMO). Bone Miner 1989; 7: 149-158
  • 41 Oelzner P, Henzgen S, Thoss K et al. Therapie der Entzündungs-assoziierten Osteoporose der antigeninduzierten Arthritis der Ratte mit 1,25-Dihydroxycholecalciferol. Osteologie 2002; 11 (Suppl. 01) 56
  • 42 Atkins GJ, Kostakis P, Pan B et al. RANKL expression is related to the differentiation state of human osteoblasts. J Bone Miner Res 2003; 18: 1088-1098
  • 43 Theoleyre S, Wittrant Y, Tat SK et al. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 2004; 15: 457-475
  • 44 Takasu H. Anti-osteoclastogenic action of active vitamin D. Nutr Rev 2008; 66 (Suppl. 02) 113-115
  • 45 Ji JD, Kim TH, Lee B et al. 1,25-dihydroxyvitamin D3 inhibits osteoclast differentiation from CD14+ osteoclast precursors of normal peripheral blood and rheumatoid arthritis synovial fluid. Ann Rheum Dis 2011; 70 (Suppl. 03) 354
  • 46 Oelzner P, Müller A, Deschner F et al. Relationship between disease activity and serum levels of vitamin D metabolites and PTH in rheumatoid arthritis. Calcif Tissue Int 1998; 62: 193-198
  • 47 Hein G, Oelzner P. Vitamin D metabolites in rheumatoid arthritis: findings – hypothesis – consequences. Z Rheumatol 2000; 59 (Suppl. 01) 28-32
  • 48 Kogawa M, Findlay DM, Anderson PH et al. Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. Endocrinology 2010; 151: 4613-4625
  • 49 Van Driel M, Koedam M, Buurman CJ et al. Evidence for autocrine/paracrine actions of vitamin D in bone: 1alpha-hydroxylase expression and activity in human bone cells. FASEB J 2006; 20: 2417-2419
  • 50 Kogawa M, Anderson PH, Findlay DM et al. The metabolism of 25(OH)-vitamin D3 by osteoclasts and their precursors regulates the differentiation of osteoclasts. J Steroid Biochem Mol Biol 2010; 121: 277-280
  • 51 DVO Leitlinie 2009 zur Prophylaxe, Diagnostik und Therapie der Osteoporose im Erwachsenenalter. Osteologie 2009; 18: 304-328
  • 52 Bouvard B, Annweiler C, Salle A et al. Extraskeletal effects of vitamin D: Facts, uncertainties, and controversies. Joint Bone Spine 2011; 78: 10-16
  • 53 Rossini M, Bongi SM, La Montagna G et al. Vitamin D deficiency in rheumatoid arthritis: prevalence, determinants and associations with disease activity and disability. Arthritis Res Ther 2010; DOI: 10.1186/ar3195.
  • 54 Oelzner P, Lehmann G, Eidner T et al. Hypercalcemia in rheumatoid arthritis: relationship with disease activity and bone metabolism. Rheumatol Int 2006; 26: 908-915
  • 55 Ebert J, Jovanovic M, Ulmer M et al. Down regulation by nuclear factor kappaB of human 25-hydroxyvitamin D3 1alpha-hydroxylase promoter. Mol Endocrinol 2004; 18: 2440-2450
  • 56 Talmor-Barkan Y, Bernheim J, Green J et al. Calcitriol counteracts endothelial cell pro-inflammatory processes in a chronic kidney disease-like environment. J Steroid Biochem Mol Biol 2011; 124: 19-24
  • 57 Talmor Y, Bernheim J, Klein O et al. Calcitriol blunts pro-atherosclerotic parameters through NFkappaB and p38 in vitro. Eur J Clin Invest 2008; 38: 548-554
  • 58 Janjetovic Z, Zmijewski MA, Tuckey RC et al. 20-hydroxycholeclciferol, product of vitamin D3 hydroxylation by p450scc, decreases NF-Kappa B activity by increasing Ikappa alpha levels in human keratinocytes. PLoS One 2009; DOI: 10.1371/journal.pone0005988.
  • 59 Bahar-Shany K, Ravid A, Koren R. Upregulation of MMP-9 production by TNFalpha in keratinocytes and its attenuation by vitamin D. J Cell Physiol 2010; 222: 729-737
  • 60 Cohen-Lahav M, Shany S, Tobvin D et al. Vitamin D descreases NFkappaB activity by increasing IkappaBalpha levels. Nephrol Dial Transplant 2006; 21: 889-897
  • 61 Berry DM, Clark CS, Meckling-Gill KA. 1alpha,12-dihydroxyvitamin D3 stimulates phosphorylation of IkappaBalpha and synergizes with TPA to induce nuclear translocation of NFkappaB during monocytic differentiation of NB4 leukemia cells. Exp Cell Res 2002; 272: 176-184
  • 62 Oelzner P, Franke S, Bondeva T et al. Interaktionen von aktivem Vitamin D mit der RAGE-NFκB vermittelten Signaltransduktion in humane Osteoblasten. Osteologie 2013; 22 (Suppl.1) 7
  • 63 Franke S, Sommer M, Rüster C et al. Advanced glycation end-products induce cell cycle arrest and proinflammatory changes in osteoarthritic fibroblast-like synovial cells. Arthritis Res Ther 2009; DOI: 10.1186/ar2807.
  • 64 Drinda S, Franke S, Eidner T et al. Decreased RAGE expression in peripheral blood mononuclear cells in patients with rheumatoid arthritis. Clin Exp Rheumatol 2009; 27: 483-490