Der Nuklearmediziner 2014; 37(01): 45-49
DOI: 10.1055/s-0034-1371845
Zukünftige Indikationen der PET/CT
© Georg Thieme Verlag KG Stuttgart · New York

F-18-Natriumfluorid-PET/CT zur Darstellung koronarer Plaquerupturen

F-18 Sodium Fluoride PET/CT for Assessment of Coronary Plaques at Risk
D. Hellwig
1   Klinik für Nuklearmedizin, Universitätsklinikum des Saarlandes, Homburg
› Author Affiliations
Further Information

Publication History

Publication Date:
31 March 2014 (online)

Zusammenfassung

Eine der häufigsten Todesursachen weltweit ist die Myokardischämie nach Ruptur eines arteriosklerotischen Plaques in einer Koronararterie. Nicht jeder Plaque ist rupturgefährdet, doch bislang fehlten Möglichkeiten, vulnerable Plaques nicht-invasiv zu identifizieren, um rechtzeitig eine Ruptur abzuwenden oder die betroffene Koronararterie vor einem konsekutiven Verschluss zu schützen. F-18-Natriumfluorid ist ein PET-Radiopharmakon zur Darstellung der Knochenbildung. Man weiß schon länger, dass sich F-18-Natriumfluorid in aktiven Verkalkungen der Aortenwand oder der Koronararterien anreichert. Neueste Studienergebnisse an Patienten kurz nach Myokardinfarkt zeigen, dass Plaque-Rupturen vermehrt Fluorid anreichern. Weiterhin konnte man zeigen, dass bei Patienten mit stabiler Angina pectoris die Fluorid-Aufnahme im Plaque und intrakoronar-sonografisch erfasste Ruptur-Kriterien eng korrelieren. Anhand von Material aus Karotis-Endarterektomien konnte man histologisch bestätigen, dass sich F-18-Fluorid in rupturiertem arteriosklerotischen Gewebe anreichert. Mit der F-18-Natriumfluorid-PET/CT gibt es somit erstmals eine klinisch einsetzbare, nicht-invasive Methode zur Darstellung der beginnenden Plaque-Ruptur. Gerade bei akuten Koronarsyndromen, vielleicht auch bei stabiler Angina pectoris verspricht man sich therapierelevante Zusatzinformation durch diese neue Indikation für F-18-Fluorid-PET/CT.

Abstract

One of the most common causes of death worldwide is myocardial ischemia from a ruptured atherosclerotic plaque in a coronary artery. Not every plaque is at risk for rupture. Up to now there was no imaging modality to non-invasively identify a vulnerable plaque and to initiate treatment needed to prevent rupture or consecutive obstruction. F-18 sodium fluoride is a PET radiopharmaceutical for the imaging of bone forma­tion. A while ago F-18 sodium fluoride was observed to accumulate in active calcifications of the aortic wall and of the coronary arteries. A recent study in patients shortly after myocardial infarction showed that ruptured plaques accumulate F-18 fluoride. In patients with stable angina, a close correlation was found between F-18 fluoride uptake and the signs of a plaque rupture as demonstrated by means of intra-­coronary ultrasound. Based on histological analysis of specimens from carotid endarterectomy it was confirm­ed that F-18 fluoride accumulates in ruptured atherosclerotic tissue. With F-18 sodium fluoride PET/CT, for the first time a non-invasive method for the imaging of incipient plaque rupture is clinically feasible. Especially in acute coronary syndromes, maybe also in patients with stable angina, additional information guiding therapy is expected from this new indication of F-18 sodium fluoride PET/CT.

 
  • Literatur

  • 1 Basu S, Hoilund-Carlsen PF, Alavi A. Assessing global cardiovascular molecular calcification with 18F-fluoride PET/CT: will this become a clinical reality and a challenge to CT calcification scoring?. Eur J Nucl Med Mol Imaging 2012; 39: 660-664
  • 2 Beheshti M, Saboury B, Mehta NN et al. Detection and global quantification of cardiovascular molecular calcification by fluoro18-fluoride positron emission tomography/computed tomography – a novel concept. Hell J Nucl Med 2011; 14: 114-120
  • 3 Boström K. Insights into the mechanism of vascular calcification. Am J Cardiol 2001; 88: 20E-22E
  • 4 Budoff MJ, Hokanson JE, Nasir K et al. Progression of coronary artery calcium predicts all-cause mortality. JACC Cardiovasc Imaging 2010; 3: 1229-1236
  • 5 Budoff MJ, Mao S, Zalace CP et al. Comparison of spiral and electron beam tomography in the evaluation of coronary calcification in asymptomatic persons. Int J Cardiol 2001; 77: 181-188
  • 6 Budoff MJ, McClelland RL, Chung H et al. Reproducibility of coronary artery calcified plaque with cardiac 64-MDCT: the Multi-Ethnic Study of Atherosclerosis. AJR Am J Roentgenol 2009; 192: 613-617
  • 7 Derlin T, Richter U, Bannas P et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 2010; 51: 862-865
  • 8 Derlin T, Wisotzki C, Richter U et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med 2011; 52: 362-368
  • 9 Detrano R, Kang X, Mahaisavariya P et al. Accuracy of quantifying coronary hydroxyapatite with electron beam tomography. Invest Radiol 1994; 29: 733-738
  • 10 Doherty TM, Fitzpatrick LA, Inoue D et al. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 2004; 25: 629-672
  • 11 Dweck MR, Chow MW, Joshi NV et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 2012; 59: 1539-1548
  • 12 Dweck MR, Jones C, Joshi NV et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation 2012; 125: 76-86
  • 13 Dweck MR, Joshi FR, Newby DE et al. Noninvasive imaging in cardiovascular therapy: the promise of coronary arterial (1)(8)F-sodium fluoride uptake as a marker of plaque biology. Expert Rev Cardiovasc Ther 2012; 10: 1075-1077
  • 14 George RT. 18F-sodium fluoride positron emission tomography: an in vivo window into coronary atherosclerotic plaque biology. J Am Coll Cardiol 2012; 59: 1549-1550
  • 15 Glaudemans AW, Slart RH, Bozzao A et al. Molecular imaging in atherosclerosis. Eur J Nucl Med Mol Imaging 2010; 37: 2381-2397
  • 16 Greenland P, LaBree L, Azen SP et al. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004; 291: 210-215
  • 17 Hak AE, Pols HA, van Hemert AM et al. Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 2000; 20: 1926-1931
  • 18 Hellwig D, Krause BJ, Schirrmeister H et al. Bone scanning with sodium 18F-fluoride PET and PET/CT. German guideline Version 1.0. Nuklearmedizin 2010; 49: 195-201
  • 19 Johnson RC, Leopold JA, Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res 2006; 99: 1044-1059
  • 20 Joshi NV, Vesey AT, Williams MC et al. 18F-fluoride positron emis­sion tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 2014; 383: 705-713
  • 21 Kronmal RA, McClelland RL, Detrano R et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2007; 115: 2722-2730
  • 22 Li Y, Berenji GR, Shaba WF et al. Association of vascular fluoride uptake with vascular calcification and coronary artery disease. Nucl Med Commun 2012; 33: 14-20
  • 23 McClelland RL, Chung H, Detrano R et al. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2006; 113: 30-37
  • 24 McEvoy JW, Blaha MJ, Defilippis AP et al. Coronary artery calcium progression: an important clinical measurement? A review of published reports. J Am Coll Cardiol 2010; 56: 1613-1622
  • 25 Naghavi M, Libby P, Falk E et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108: 1664-1672
  • 26 Nissen SE, Nicholls SJ, Sipahi I et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006; 295: 1556-1565
  • 27 Raggi P, Cooil B, Shaw LJ et al. Progression of coronary calcium on serial electron beam tomographic scanning is greater in patients with future myocardial infarction. Am J Cardiol 2003; 92: 827-829
  • 28 Rumberger JA, Simons DB, Fitzpatrick LA et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995; 92: 2157-2162
  • 29 Stary HC, Chandler AB, Dinsmore RE et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995; 92: 1355-1374
  • 30 Thomas GS, Haraszti RA. A new frontier in atherosclerotic coronary imaging. Lancet 2014; 383: 674-675
  • 31 Virmani R, Kolodgie FD, Burke AP et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262-1275