Zentralbl Chir 2014; 139(5): 508-517
DOI: 10.1055/s-0033-1350668
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Der molekulare Bypass: eine etablierte Methode zur Revaskularisation von inoperablen pAVK-Patienten oder nur eine Zukunftsvision?[*]

The Molecular Bypass: An Established Method for Revascularisation of Non-Operable PAD Patients or Merely a Future Vision
J. Herold
Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg, Deutschland
,
S. Said
Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg, Deutschland
,
R. Braun-Dullaeus
Klinik für Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
02 October 2013 (online)

Zusammenfassung

Das Kollateralenwachstum ist ein physiologischer Prozess, der nicht bei jedem Menschen gleichermaßen ausgeprägt wird. Kommt es in einem Gefäßsystem zu einer hämodynamisch relevanten Stenose, wird der Blutfluss durch Umgehungskreisläufe geleitet, um minderdurchblutetes Gewebe zu versorgen. Diese Umgehungskreisläufe existieren bereits auf kapillarer Ebene und sind per definitionem keine echten neuen Gefäße. Postnatale Vaskulogenese (wahre Gefäßneubildung) kommt beim adulten Organismus lediglich bei der Tumorvaskularisation, der Wundheilung, im Endometrium und im Rahmen chronischer Erkrankungen wie der rheumatoiden Arthritis und der Psoriasis vor. Da Gefäßstenosen, Gefäßverschlüsse und Verschlüsse das kardiovaskuläre Krankheitsbild bestimmen, sind deren Wiedereröffnung oder die Anlage von künstlichen Bypässen effektive Therapieansätze. Jedoch sind die vorhandenen Strategien bei vielen Patienten bereits ausgeschöpft, sodass die Förderung des natürlichen Kollateralenwachstums, die Arteriogenese, ein neues Feld therapeutischer Optionen eröffnet. Monozyten spielen hier eine Schlüsselrolle, da sie an Orten der Arteriogenese anzutreffen sind und dort multiple Wachstumsfaktoren, die für die Kollateralenentstehung notwendig sind, sezernieren. Ebenso werden Stammzellen unterschiedlicher Herkunft, endotheliale Vorläuferzellen (Progenitorzellen) oder mononukleäre Zellen derzeit zur Förderung des Gefäßwachstums eingesetzt. Auch die Applikation von Wachstumsfaktoren wie VEGF, MCP-1, GM-CSF sind hier bereits in klinischen Studien angewandt worden. Dieser Übersichtsartikel erläutert die Physiologie und Pathophysiologie von Gefäßstenosen und deren Kompensationsmechanismen und fasst bisherige Therapieansätze und neue Strategien für inoperable pAVK-Patienten zusammen. Die aktuelle Studienlage zur zellbasierten Therapie des molekularen Bypasses sowie die Ergebnisse bisheriger Techniken wie die der PTA, Stentimplantationen und der Bypassanlagen werden übersichtlich dargestellt.

Abstract

Collateral vessel growth is a physiological process that is not equally pronounced in all people. After the development of a haemodynamically relevant stenosis in vascular systems, blood flow is directed through a collateral circulation to supply ischaemic tissue. This collateral circulation exists on the capillary level and by definition, is not composed of real new vessels. Postnatal vasculogenesis (true neovascularisation) occurs in the adult organism in tumour vascularisation, wound healing, in the endometrium, and in the context of chronic diseases such as rheumatoid arthritis and psoriasis. Reopening of the occluded vessel or use of artificial bypass grafts are the most attractive therapeutic approaches for treating peripheral arterial and coronary artery disease. These strategies have been exhausted in many patients; therefore augmentation of arteriogenesis can be more useful. Arteriogenesis, the promotion of natural collateral growth, is a hot topic in vascular research. Monocytes play a key role in arteriogenesis by “homing” to areas of collateral vessel growth and locally secrete multiple essential growth factors. Furthermore, stem cells of different origins, endothelial progenitor cells or mononuclear cells are currently being used to promote vessel growth. Also, the application of growth factors such as VEGF, MCP-1, GM-CSF have been already used in clinical trials. This review article describes the physiology and pathophysiology of vascular stenoses and their compensation mechanisms. The review also gives an overview of current treatment approaches and new strategies for non-operable PAD patients. The article presents the current cell and growth factor-related studies, as well as results of balloon dilatation and stent implantation or bypass surgery studies for improvement of revascularisation.

* Prof. Dr. Dr. H. Lippert gewidmet


 
  • Literaturangaben:

  • 1 Statistisches Bundesamt. Anzahl der Gestorbenen nach Kapiteln der International Statistical Classification of Diseases and Related Health Problems, Krankheiten des Kreislaufsystems 2011. Im Internet: https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/Todesursachen/Tabellen/GestorbeneAnzahl.html Stand: 25.05.2013
  • 2 Rooke TW, Hirsch AT, Misra S et al. 2011 ACCF/AHA Focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2011; 124: 2020-2045
  • 3 Margolis J, Barron JJ, Grochulski WD. Health care resources and costs for treating peripheral artery disease in a managed care population: results from analysis of administrative claims data. J Manag Care Pharm 2005; 11: 727-734
  • 4 Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg 2000; 31: S1-S296
  • 5 Norgren L, Hiatt WR, Dormandy JA et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg 2007; 33 Suppl 1: S1-S75
  • 6 Adam DJ, Beard JD, Cleveland T et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 2005; 366: 1925-1934
  • 7 Fratezi AC, Albers M, De Luccia ND et al. Outcome and quality of life of patients with severe chronic limb ischaemia: a cohort study on the influence of diabetes. Eur J Vasc Endovasc Surg 1995; 10: 459-465
  • 8 Nasr MK, McCarthy RJ, Hardman J et al. The increasing role of percutaneous transluminal angioplasty in the primary management of critical limb ischaemia. Eur J Vasc Endovasc Surg 2002; 23: 398-403
  • 9 Muradin GSR, Bosch JL, Stijnen T et al. Balloon dilation and stent implantation for treatment of femoropopliteal arterial disease: meta-analysis. Radiology 2001; 221: 137-145
  • 10 Dake MD, Ansel GM, Jaff MR et al. Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month Zilver PTX randomized study results. Circ Cardiovasc Interv 2011; 4: 495-504
  • 11 Ponec D, Jaff MR, Swischuk J et al. The Nitinol SMART stent vs. Wallstent for suboptimal iliac artery angioplasty: CRISP-US trial results. J Vasc Interv Radiol 2004; 15: 911-918
  • 12 Hiatt WR. Medical treatment of peripheral arterial disease and claudication. N Engl J Med 2001; 344: 1608-1621
  • 13 Schillinger M, Sabeti S, Dick P et al. Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation 2007; 115: 2745-2749
  • 14 Abdulhannan P, Russell DA, Homer-Vanniasinkam S. Peripheral arterial disease: a literature review. Br Med Bull 2012; 104: 21-39
  • 15 Klinkert P, Schepers A, Burger DH et al. Vein versus polytetrafluoroethylene in above-knee femoropopliteal bypass grafting: five-year results of a randomized controlled trial. J Vasc Surg 2003; 37: 149-155
  • 16 Goy JJ, Urban P. Life and limb: bypass versus angioplasty in the ischaemic limb. Lancet 2005; 366: 1905-1906
  • 17 Helisch A, Schaper W. Arteriogenesis: the development and growth of collateral arteries. Microcirculation 2003; 10: 83-97
  • 18 Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6: 389-395
  • 19 Ito WD, Arras M, Scholz D et al. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol 1997; 273: H1255-H1265
  • 20 Ito WD, Arras M, Winkler B et al. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res 1997; 80: 829-837
  • 21 Seghers L, de Vries MR, Pardali E et al. Shear induced collateral artery growth modulated by endoglin but not by ALK1. J Cell Mol Med 2012; 16: 2440-2450
  • 22 Pipp F, Boehm S, Cai WJ et al. Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler Thromb Vasc Biol 2004; 24: 1664-1668
  • 23 Schaper W, Ito WD. Molecular mechanisms of coronary collateral vessel growth. Circ Res 1996; 79: 911-919
  • 24 Schaper W, Scholz D. Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 2003; 23: 1143-1151
  • 25 Cai WJ, Li MB, Wu X et al. Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis. Mol Cell Biochem 2009; 322: 161-169
  • 26 Polverini PJ, Cotran PS, Gimbrone jr. MA et al. Activated macrophages induce vascular proliferation. Nature 1977; 269: 804-806
  • 27 Schaper J, König R, Franz D et al. The endothelial surface of growing coronary collateral arteries. Intimal margination and diapedesis of monocytes. A combined SEM and TEM study. Virchows Arch A Pathol Anat Histol 1976; 370: 193-205
  • 28 Schaper J, Weihrauch D. Collateral Vessel Development in the Porcine and Canine Heart. In: Schaper W, Schaper J, eds. Collateral Circulation – Heart, Brain, Kidney, Limbs. Boston, Dordrecht, London: Kluwer Academic Publishers; 1993: 65-102
  • 29 Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 2002; 90: 251-262
  • 30 Scholz D, Ito W, Fleming I et al. Ultrastructure and molecular histology of rabbit hindlimb collateral artery growth (arteriogenesis). Virchows Arch 2000; 436: 257-270
  • 31 Wu S, Wu X, Zhu W et al. Immunohistochemical study of the growth factors, aFGF, bFGF, PDGF-AB, VEGF-A and its receptor (Flk-1) during arteriogenesis. Mol Cell Biochem 2010; 343: 223-229
  • 32 Schaper W. Collateral circulation: past and present. Basic Res Cardiol 2009; 104: 5-21
  • 33 Schaper W, Buschmann I. Arteriogenesis, the good and bad of it. Eur Heart J 1999; 20: 1297-1299
  • 34 Schaper WK, Xhonneux R, Jageneau AH. Stimulation of the coronary collateral circulation by lidoflazine (R 7904). Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 1965; 252: 1-8
  • 35 Schaper W. [Influence of physical factors on the radial growth of collateral vessels in coronary circulation]. Verh Dtsch Ges Kreislaufforsch 1966; 32: 282-286
  • 36 Schaper W, Jageneau A, Xhonneux R. The development of collateral circulation in the pig and dog heart. Cardiologia 1967; 51: 321-335
  • 37 Schaper W, Remijsen P, Xhonneux R. The size of myocardial infarction after experimental coronary artery ligation. Z Kreislaufforsch 1969; 58: 904-909
  • 38 Schaper W, Bernotat-Danielowski S, Nienaber C et al. Collateral Circulation. 2nd. ed. New York: Raven Press Ltd.; 1992
  • 39 van Royen N, Piek JJ, Buschmann I et al. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res 2001; 49: 543-553
  • 40 Asahara T, Takahashi T, Masuda H et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18: 3964-3972
  • 41 Takahashi T, Kalka C, Masuda H et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434-438
  • 42 Kawamoto A, Asahara T, Losordo DW. Transplantation of endothelial progenitor cells for therapeutic neovascularization. Cardiovasc Radiat Med 2002; 3: 221-225
  • 43 Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967
  • 44 Devaraj S, Jialal I. Dysfunctional endothelial progenitor cells in metabolic syndrome. Exp Diabetes Res 2012; 2012: 585018
  • 45 Kim KA, Shin YJ, Kim JH et al. Dysfunction of endothelial progenitor cells under diabetic conditions and its underlying mechanisms. Arch Pharm Res 2012; 35: 223-234
  • 46 Ruiter MS, van Golde JM, Schaper NC et al. Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisms. Clin Sci (Lond) 2010; 119: 225-238
  • 47 Heil M, Ziegelhoeffer T, Pipp F et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 2002; 283: H2411-2419
  • 48 Arras M, Ito WD, Scholz D et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 1998; 101: 40-50
  • 49 Herold J, Pipp F, Fernandez B et al. Transplantation of monocytes: a novel strategy for in vivo augmentation of collateral vessel growth. Hum Gene Ther 2004; 15: 1-12
  • 50 Francke A, Weinert S, Strasser RH et al. Transplantation of bone marrow derived monocytes: a novel approach for augmentation of arteriogenesis in a murine model of femoral artery ligation. Am J Transl Res 2013; 5: 155-169
  • 51 Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-674
  • 52 Schaper W, Schaper J. Angiogenesis and Coronary Collateral Circulation. In: Sperelakis N, Kurachi Y, Terzic A, et al., eds. Heart Physiology and Pathophysiology. 4th ed. San Diego San Francisco New York Boston London Sydney Tokyo: Academic Press; 2001: 1031-1043
  • 53 Takeshita S, Pu LQ, Stein LA et al. Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation 1994; 90: II228-234
  • 54 Takeshita S, Zheng LP, Brogi E et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994; 93: 662-670
  • 55 Konisti S, Kiriakidis S, Paleolog EM. Hypoxia–a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat Rev Rheumatol 2012; 8: 153-162
  • 56 Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol 2012; 8: 390-398
  • 57 Creager MA, Olin JW, Belch JJ et al. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation 2011; 124: 1765-1773
  • 58 van Royen N, Schirmer SH, Atasever B et al. START Trial: a pilot study on STimulation of ARTeriogenesis using subcutaneous application of granulocyte-macrophage colony-stimulating factor as a new treatment for peripheral vascular disease. Circulation 2005; 112: 1040-1046
  • 59 Rajagopalan S, Mohler 3rd E, Lederman RJ et al. Regional angiogenesis with vascular endothelial growth factor (VEGF) in peripheral arterial disease: Design of the RAVE trial. Am Heart J 2003; 145: 1114-1118
  • 60 Baumgartner I. Therapeutic angiogenesis: theoretic problems using vascular endothelial growth factor. Curr Cardiol Rep 2000; 2: 24-28
  • 61 Ma C, Wang Q, Man Y et al. Cardiovascular medications in angiogenesis – how to avoid the sting in the tail. Int J Cancer 2012; 131: 1249-1259
  • 62 Cao Y. Therapeutic angiogenesis for ischemic disorders: what is missing for clinical benefits?. Discov Med 2010; 9: 179-184
  • 63 Matsuki A, Yamamoto S, Nakagami H et al. No influence of tumor growth by intramuscular injection of hepatocyte growth factor plasmid DNA: safety evaluation of therapeutic angiogenesis gene therapy in mice. Biochem Biophys Res Commun 2004; 315: 59-65
  • 64 Ziegelhoeffer T, Fernandez B, Kostin S et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 2004; 94: 230-238
  • 65 Semenza GL. Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med 2003; 54: 17-28
  • 66 Luttun A, Tjwa M, Moons L et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002; 8: 831-840
  • 67 Couffinhal T, Dufourcq P, Daret D et al. [The mechanisms of angiogenesis. Medical and therapeutic applications]. Rev Med Interne 2001; 22: 1064-1082
  • 68 Timar J, Dome B, Fazekas K et al. Angiogenesis-dependent diseases and angiogenesis therapy. Pathol Oncol Res 2001; 7: 85-94
  • 69 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249-257
  • 70 Senger DR, Galli SJ, Dvorak AM et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983-985
  • 71 Leung DW, Cachianes G, Kuang WJ et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306-1309
  • 72 Baumgartner I, Pieczek A, Manor O et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998; 97: 1114-1123
  • 73 Henry TD, Annex BH, McKendall GR et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 2003; 107: 1359-1365
  • 74 Isner JM, Walsh K, Symes J et al. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 1995; 91: 2687-2692
  • 75 Baumgartner I, Rauh G, Pieczek A et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 2000; 132: 880-884
  • 76 Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999; 286: 2244-2245
  • 77 Isner JM, Vale PR, Symes JF et al. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001; 89: 389-400
  • 78 Rajagopalan S, Olin J, Deitcher S et al. Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase I dose-escalation experience. Circulation 2007; 115: 1234-1243
  • 79 Morishita R, Makino H, Aoki M et al. Phase I/II a clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arterioscler Thromb Vasc Biol 2011; 31: 713-720
  • 80 Powell RJ, Goodney P, Mendelsohn FO et al. Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J Vasc Surg 2010; 52: 1525-1530
  • 81 van Royen N, Piek JJ, Legemate DA et al. Design of the START-trial: STimulation of ARTeriogenesis using subcutaneous application of GM-CSF as a new treatment for peripheral vascular disease. A randomized, double-blind, placebo-controlled trial. Vasc Med 2003; 8: 191-196
  • 82 Grossman PM, Mendelsohn F, Henry TD et al. Results from a phase II multicenter, double-blind placebo-controlled study of Del-1 (VLTS-589) for intermittent claudication in subjects with peripheral arterial disease. Am Heart J 2007; 153: 874-880
  • 83 Nikol S, Baumgartner I, van Belle E et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 2008; 16: 972-978
  • 84 Fowkes FG, Price JF. Gene therapy for critical limb ischaemia: the TAMARIS trial. Lancet 2011; 377: 1894-1896
  • 85 Belch J, Hiatt WR, Baumgartner I et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 2011; 377: 1929-1937
  • 86 Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 2010; 122: 517-526
  • 87 Volz KS, Miljan E, Khoo A et al. Development of pluripotent stem cells for vascular therapy. Vascul Pharmacol 2012; 56: 288-296
  • 88 Rufaihah AJ, Huang NF, Jame S et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 2011; 31: e72-e79
  • 89 James LI, Barsyte-Lovejoy D, Zhong N et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat Chem Biol 2013; 9: 184-191
  • 90 Nikol S. [Stem cell therapy in vascular medicine]. Zentralbl Chir 2011; 136: 399-403
  • 91 Tateishi-Yuyama E, Matsubara H, Murohara T et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-435
  • 92 Higashi Y, Kimura M, Hara K et al. Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 2004; 109: 1215-1218
  • 93 Saigawa T, Kato K, Ozawa T et al. Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ J 2004; 68: 1189-1193
  • 94 Lenk K, Adams V, Lurz P et al. Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J 2005; 26: 1903-1909
  • 95 Nizankowski R, Petriczek T, Skotnicki A et al. The treatment of advanced chronic lower limb ischaemia with marrow stem cell autotransplantation. Kardiol Pol 2005; 63: 351-360 discussion 361
  • 96 Huang P, Li S, Han M et al. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 2005; 28: 2155-2160
  • 97 Ishida A, Ohya Y, Sakuda H et al. Autologous peripheral blood mononuclear cell implantation for patients with peripheral arterial disease improves limb ischemia. Circ J 2005; 69: 1260-1265
  • 98 Kawamura A, Horie T, Tsuda I et al. Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs 2006; 9: 226-233
  • 99 Kawamura A, Horie T, Tsuda I et al. Prevention of limb amputation in patients with limbs ulcers by autologous peripheral blood mononuclear cell implantation. Ther Apher Dial 2005; 9: 59-63
  • 100 Amann B, Ludemann C, Ratei R et al. [Autologous bone-marrow stem-cell transplantation for induction of arteriogenesis for limb salvage in critical limb ischaemia]. Zentralbl Chir 2009; 134: 298-304
  • 101 Amann B, Luedemann C, Ratei R et al. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant 2009; 18: 371-380
  • 102 Amann B, Ludemann C, Ruckert R et al. Design and rationale of a randomized, double-blind, placebo-controlled phase III study for autologous bone marrow cell transplantation in critical limb ischemia: the BONe Marrow Outcomes Trial in Critical Limb Ischemia (BONMOT-CLI). Vasa 2008; 37: 319-325
  • 103 Walter DH, Krankenberg H, Balzer JO et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv 2011; 4: 26-37
  • 104 Meyer F, Graf D, Weber M et al. [Interims analysis of a prospective observational study on the use of cilostazol (Pletal®) in daily clinical vascularsurgical practice]. Zentralbl Chir 2011; 136: 436-443
  • 105 Payrits T, Ernst A, Ladits E et al. [Vagal stimulation – a new possibility for conservative treatment of peripheral arterial occlusion disease]. Zentralbl Chir 2011; 136: 431-435
  • 106 Bussolino F, Ziche M, Wang JM et al. In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 1991; 87: 986-995
  • 107 Buschmann IR, Hoefer IE, van Royen N et al. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 2001; 159: 343-356
  • 108 Bussolino F, Wang JM, Defilippi P et al. Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 1989; 337: 471-473
  • 109 Khmelewski E, Becker A, Meinertz T et al. Tissue resident cells play a dominant role in arteriogenesis and concomitant macrophage accumulation. Circ Res 2004; 95: E56-64
  • 110 Ito WD, Khmelevski E. Tissue macrophages: “satellite cells” for growing collateral vessels? A hypothesis. Endothelium 2003; 10: 233-235
  • 111 Heil M, Ziegelhoeffer T, Wagner S et al. Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ Res 2004; 94: 671-677
  • 112 Delves PJ, Roitt IM. The immune system. Second of two parts. N Engl J Med 2000; 343: 108-117
  • 113 Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med 2000; 343: 37-49
  • 114 Stabile E, Burnett MS, Watkins C et al. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 2003; 108: 205-210
  • 115 Stabile E, Kinnaird T, la Sala A et al. CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin-16. Circulation 2006; 113: 118-124
  • 116 Boucher RC. Current status of CF gene therapy. Trends Genet 1996; 12: 81-84
  • 117 Knowles MR, Hohneker KW, Zhou Z et al. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med 1995; 333: 823-831