Semin Neurol 2013; 33(02): 091-109
DOI: 10.1055/s-0033-1348964
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Pathophysiology of Acute Coma and Disorders of Consciousness: Considerations for Diagnosis and Management

Bethany M. McClenathan
1   Department of Neurology, Neurocritical Care, University of Utah, Salt Lake City, Utah
,
Nitish V. Thakor
2   Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
,
Robert E. Hoesch
1   Department of Neurology, Neurocritical Care, University of Utah, Salt Lake City, Utah
› Author Affiliations
Further Information

Publication History

Publication Date:
25 July 2013 (online)

Abstract

Disorders of consciousness are due to failure of the arousal system. In this review, the authors introduce the spectrum of disorders of consciousness and describe the structures, projections, and neurotransmitters involved in the generation and maintenance of arousal. Next, they discuss the neurologic diseases frequently associated with arousal failure. Evaluation of patients with disorders of arousal is summarized, including the neurologic exam, electrophysiological studies, biochemical testing, and imaging modalities. Finally, they review treatment options, including therapeutic hypothermia, medications, and deep brain and spinal cord stimulation.

 
  • References

  • 1 Posner JB, Plum F. Plum and Posner's Diagnosis of Stupor and Coma. 4th ed. New York, NY: Oxford University Press; 2007
  • 2 Torbey MT. Neurocritical Care. 1st ed. New York, NY: Cambridge University Press; 2010
  • 3 Monti MM, Laureys S, Owen AM. The vegetative state. BMJ 2010; 341: c3765
  • 4 Laureys S, Celesia GG, Cohadon F , et al; European Task Force on Disorders of Consciousness. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 2010; 8: 68
  • 5 Dauvilliers Y, Buguet A. Hypersomnia. Dialogues Clin Neurosci 2005; 7 (4) 347-356
  • 6 Faul MXL, Wald MM, Coronado VG. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta, GA: Centers for Disease Control and Prevention; 2010
  • 7 Jacobs B, Beems T, van der Vliet TM , et al. Outcome prediction in moderate and severe traumatic brain injury: a focus on computed tomography variables. Neurocrit Care 2012;
  • 8 Roger VL, Go AS, Lloyd-Jones DM , et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 2012; 125 (1) 188-197
  • 9 Dostović Z, Smajlović D, Dostović E, Ibrahimagić OC. Stroke and disorders of consciousness. Cardiovasc Psychiatry Neurol 2012; 2012: 429108
  • 10 Rincon F, Mayer SA. The epidemiology of intracerebral hemorrhage in the United States from 1979 to 2008. Neurocrit Care 2012;
  • 11 Ruiz-Sandoval JL, Chiquete E, Romero-Vargas S, Padilla-Martínez JJ, González-Cornejo S. Grading scale for prediction of outcome in primary intracerebral hemorrhages. Stroke 2007; 38 (5) 1641-1644
  • 12 Connolly Jr ES, Rabinstein AA, Carhuapoma JR , et al; American Heart Association Stroke Council; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; Council on Cardiovascular Surgery and Anesthesia; Council on Clinical Cardiology. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2012; 43 (6) 1711-1737
  • 13 Bian LH, Liu YF, Nichols LT , et al. Epidemiology of subarachnoid hemorrhage, patterns of management, and outcomes in China: a hospital-based multicenter prospective study. CNS Neurosci Ther 2012; 18 (11) 895-902
  • 14 Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 1968; 28 (1) 14-20
  • 15 Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 2010; 81 (11) 1479-1487
  • 16 Merchant RM, Yang L, Becker LB , et al; American Heart Association Get With The Guidelines-Resuscitation Investigators. Incidence of treated cardiac arrest in hospitalized patients in the United States. Crit Care Med 2011; 39 (11) 2401-2406
  • 17 Kudenchuk PJ, Redshaw JD, Stubbs BA , et al. Impact of changes in resuscitation practice on survival and neurological outcome after out-of-hospital cardiac arrest resulting from nonshockable arrhythmias. Circulation 2012; 125 (14) 1787-1794
  • 18 Nelson JE, Tandon N, Mercado AF, Camhi SL, Ely EW, Morrison RS. Brain dysfunction: another burden for the chronically critically ill. Arch Intern Med 2006; 166 (18) 1993-1999
  • 19 Ely EW, Shintani A, Truman B , et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004; 291 (14) 1753-1762
  • 20 Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1949; 1 (4) 455-473
  • 21 Parvizi J, Damasio AR. Neuroanatomical correlates of brainstem coma. Brain 2003; 126 (Pt 7) 1524-1536
  • 22 Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 2011; 519 (5) 933-956
  • 23 Holmstrand EC, Sesack SR. Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons. Brain Struct Funct 2011; 216 (4) 331-345
  • 24 Haas HL, Lin JS. Waking with the hypothalamus. Pflugers Arch 2012; 463 (1) 31-42
  • 25 Jones BE. Arousal systems. Front Biosci 2003; 8: s438-s451
  • 26 Xi MC, Morales FR, Chase MH. Interactions between GABAergic and cholinergic processes in the nucleus pontis oralis: neuronal mechanisms controlling active (rapid eye movement) sleep and wakefulness. J Neurosci 2004; 24 (47) 10670-10678
  • 27 Xi MC, Morales FR, Chase MH. A GABAergic pontine reticular system is involved in the control of wakefulness and sleep. 1999; 2 (2) 43-48
  • 28 Flint RR, Chang T, Lydic R, Baghdoyan HA. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness. J Neurosci 2010; 30 (37) 12301-12309
  • 29 Liang CL, Marks GA. A novel GABAergic afferent input to the pontine reticular formation: the mesopontine GABAergic column. Brain Res 2009; 1297: 32-40
  • 30 Watson CJ, Lydic R, Baghdoyan HA. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation. J Neurochem 2011; 118 (4) 571-580
  • 31 Brischoux F, Mainville L, Jones BE. Muscarinic-2 and orexin-2 receptors on GABAergic and other neurons in the rat mesopontine tegmentum and their potential role in sleep-wake state control. J Comp Neurol 2008; 510 (6) 607-630
  • 32 Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev 2011; 15 (4) 269-281
  • 33 Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev 1992; 72 (1) 165-229
  • 34 Sakai K. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Neuroscience 2011; 197: 200-224
  • 35 Kohlmeier KA, Inoue T, Leonard CS. Hypocretin/orexin peptide signaling in the ascending arousal system: elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum. J Neurophysiol 2004; 92 (1) 221-235
  • 36 Kohlmeier KA, Watanabe S, Tyler CJ, Burlet S, Leonard CS. Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: noisy cation current activation and selective enhancement of Ca2+ transients mediated by L-type calcium channels. J Neurophysiol 2008; 100 (4) 2265-2281
  • 37 Levine ES, Jacobs BL. Neurochemical afferents controlling the activity of serotonergic neurons in the dorsal raphe nucleus: microiontophoretic studies in the awake cat. J Neurosci 1992; 12 (10) 4037-4044
  • 38 Jenkinson N, Nandi D, Muthusamy K , et al. Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus. Mov Disord 2009; 24 (3) 319-328
  • 39 Boucetta S, Jones BE. Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats. J Neurosci 2009; 29 (14) 4664-4674
  • 40 Muthusamy KA, Aravamuthan BR, Kringelbach ML , et al. Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg 2007; 107 (4) 814-820
  • 41 Motts SD, Schofield BR. Cholinergic and non-cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei to the medial geniculate body in Guinea pigs. Front Neuroanat 2010; 4: 137
  • 42 Datta S, O'Malley MW, Patterson EH. Calcium/calmodulin kinase II in the pedunculopontine tegmental nucleus modulates the initiation and maintenance of wakefulness. J Neurosci 2011; 31 (47) 17007-17016
  • 43 Keren NI, Lozar CT, Harris KC, Morgan PS, Eckert MA. In vivo mapping of the human locus coeruleus. Neuroimage 2009; 47 (4) 1261-1267
  • 44 Benarroch EE. The locus ceruleus norepinephrine system: functional organization and potential clinical significance. Neurology 2009; 73 (20) 1699-1704
  • 45 Chandler D, Waterhouse BD. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex. Front Behav Neurosci 2012; 6: 20
  • 46 Henny P, Brischoux F, Mainville L, Stroh T, Jones BE. Immunohistochemical evidence for synaptic release of glutamate from orexin terminals in the locus coeruleus. Neuroscience 2010; 169 (3) 1150-1157
  • 47 Zamalloa T, Bailey CP, Pineda J. Glutamate-induced post-activation inhibition of locus coeruleus neurons is mediated by AMPA/kainate receptors and sodium-dependent potassium currents. Br J Pharmacol 2009; 156 (4) 649-661
  • 48 Devilbiss DM, Waterhouse BD. Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. J Neurophysiol 2011; 105 (1) 69-87
  • 49 Monti JM, Monti D. The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 2007; 11 (2) 113-133
  • 50 Lima MM, Andersen ML, Reksidler AB, Vital MA, Tufik S. The role of the substantia nigra pars compacta in regulating sleep patterns in rats. PLoS ONE 2007; 2 (6) e513
  • 51 Palmiter RD. Dopamine signaling as a neural correlate of consciousness. Neuroscience 2011; 198: 213-220
  • 52 Miller RL, Stein MK, Loewy AD. Serotonergic inputs to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei that project to the ventral tegmental area. Neuroscience 2011; 193: 229-240
  • 53 Zhang C, Kang Y, Lundy RF. Terminal field specificity of forebrain efferent axons to the pontine parabrachial nucleus and medullary reticular formation. Brain Res 2011; 1368: 108-118
  • 54 Niu JG, Yokota S, Tsumori T, Qin Y, Yasui Y. Glutamatergic lateral parabrachial neurons innervate orexin-containing hypothalamic neurons in the rat. Brain Res 2010; 1358: 110-122
  • 55 Torterolo P, Sampogna S, Chase MH. A restricted parabrachial pontine region is active during non-rapid eye movement sleep. Neuroscience 2011; 190: 184-193
  • 56 Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature 2006; 441 (7093) 589-594
  • 57 Llinás RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol 2006; 95 (6) 3297-3308
  • 58 Rodrigo-Angulo ML, Heredero S, Rodríguez-Veiga E, Reinoso-Suárez F. GABAergic and non-GABAergic thalamic, hypothalamic and basal forebrain projections to the ventral oral pontine reticular nucleus: their implication in REM sleep modulation. Brain Res 2008; 1210: 116-125
  • 59 Van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 2002; 39 (2-3) 107-140
  • 60 Vertes RP, Hoover WB, Rodriguez JJ. Projections of the central medial nucleus of the thalamus in the rat: node in cortical, striatal and limbic forebrain circuitry. Neuroscience 2012; 219: 120-136
  • 61 Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci 2002; 357 (1428) 1659-1673
  • 62 Hughes SW, Lörincz M, Cope DW , et al. Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron 2004; 42 (2) 253-268
  • 63 Hirata A, Castro-Alamancos MA. Neocortex network activation and deactivation states controlled by the thalamus. J Neurophysiol 2010; 103 (3) 1147-1157
  • 64 Blasiak T, Siejka S, Raison S, Pevet P, Lewandowski MH. The serotonergic inhibition of slowly bursting cells in the intergeniculate leaflet of the rat. Eur J Neurosci 2006; 24 (10) 2769-2780
  • 65 Lin JS, Sakai K, Vanni-Mercier G, Jouvet M. A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 1989; 479 (2) 225-240
  • 66 Hassani OK, Henny P, Lee MG, Jones BE. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 2010; 32 (3) 448-457
  • 67 Cluderay JE, Harrison DC, Hervieu GJ. Protein distribution of the orexin-2 receptor in the rat central nervous system. Regul Pept 2002; 104 (1-3) 131-144
  • 68 Broberger C, De Lecea L, Sutcliffe JG, Hökfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol 1998; 402 (4) 460-474
  • 69 Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A 2009; 106 (7) 2418-2422
  • 70 Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 2005; 25 (28) 6716-6720
  • 71 Del Cid-Pellitero E, Garzón M. Hypocretin1/OrexinA-containing axons innervate locus coeruleus neurons that project to the rat medial prefrontal cortex. Implication in the sleep-wakefulness cycle and cortical activation. Synapse 2011; 65 (9) 843-857
  • 72 González JA, Jensen LT, Fugger L, Burdakov D. Convergent inputs from electrically and topographically distinct orexin cells to locus coeruleus and ventral tegmental area. Eur J Neurosci 2012; 35 (9) 1426-1432
  • 73 Panula P, Pirvola U, Auvinen S, Airaksinen MS. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 1989; 28 (3) 585-610
  • 74 Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 2003; 4 (2) 121-130
  • 75 Hong EY, Lee HS. Retrograde study of projections from the tuberomammillary nucleus to the mesopontine cholinergic complex in the rat. Brain Res 2011; 1383: 169-178
  • 76 John J, Ramanathan L, Siegel JM. Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats. Am J Physiol Regul Integr Comp Physiol 2008; 295 (6) R2041-R2049
  • 77 Rye DB, Wainer BH, Mesulam MM, Mufson EJ, Saper CB. Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 1984; 13 (3) 627-643
  • 78 Arrigoni E, Mochizuki T, Scammell TE. Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol (Oxf) 2010; 198 (3) 223-235
  • 79 Berntson GG, Shafi R, Sarter M. Specific contributions of the basal forebrain corticopetal cholinergic system to electroencephalographic activity and sleep/waking behaviour. Eur J Neurosci 2002; 16 (12) 2453-2461
  • 80 Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012; 74 (5) 858-873
  • 81 Constantinople CM, Bruno RM. Effects and mechanisms of wakefulness on local cortical networks. Neuron 2011; 69 (6) 1061-1068
  • 82 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001; 98 (2) 676-682
  • 83 Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003; 100 (1) 253-258
  • 84 Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 2009; 30 (2) 625-637
  • 85 Sämann PG, Wehrle R, Hoehn D , et al. Development of the brain's default mode network from wakefulness to slow wave sleep. Cereb Cortex 2011; 21 (9) 2082-2093
  • 86 Crone JS, Ladurner G, Höller Y, Golaszewski S, Trinka E, Kronbichler M. Deactivation of the default mode network as a marker of impaired consciousness: an fMRI study. PLoS ONE 2011; 6 (10) e26373
  • 87 Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005; 102 (27) 9673-9678
  • 88 Smith DH, Meaney DF, Shull WH. Diffuse axonal injury in head trauma. J Head Trauma Rehabil 2003; 18 (4) 307-316
  • 89 Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974; 2 (7872) 81-84
  • 90 American Congress of Rehabilitation Medicine. Definition of mild traumatic brain injury. J Head Trauma Rehabil 1993; 8 (3) 86-87
  • 91 Servadei F, Teasdale G, Merry G. Neurotraumatology Committee of the World Federation of Neurosurgical Societies. Defining acute mild head injury in adults: a proposal based on prognostic factors, diagnosis, and management. J Neurotrauma 2001; 18 (7) 657-664
  • 92 Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 1982; 12 (6) 564-574
  • 93 Adams JH, Graham DI, Gennarelli TA, Maxwell WL. Diffuse axonal injury in non-missile head injury. J Neurol Neurosurg Psychiatry 1991; 54 (6) 481-483
  • 94 Selladurai BM, Sherazi ZA, Nair RC, Tan YY, Khadar MA. Diffuse axonal injury A clinical and computerised tomography study of 128 patients. J Clin Neurosci 1995; 2 (3) 216-223
  • 95 Smith DH, Nonaka M, Miller R , et al. Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J Neurosurg 2000; 93 (2) 315-322
  • 96 Hinzman JM, Thomas TC, Burmeister JJ , et al. Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: an enzyme-based microelectrode array study. J Neurotrauma 2010; 27 (5) 889-899
  • 97 Chelly H, Chaari A, Daoud E , et al. Diffuse axonal injury in patients with head injuries: an epidemiologic and prognosis study of 124 cases. J Trauma 2011; 71 (4) 838-846
  • 98 Weiss N, Galanaud D, Carpentier A , et al. A combined clinical and MRI approach for outcome assessment of traumatic head injured comatose patients. J Neurol 2008; 255 (2) 217-223
  • 99 Baumann CR, Bassetti CL, Valko PO , et al. Loss of hypocretin (orexin) neurons with traumatic brain injury. Ann Neurol 2009; 66 (4) 555-559
  • 100 Baumann CR, Stocker R, Imhof HG , et al. Hypocretin-1 (orexin A) deficiency in acute traumatic brain injury. Neurology 2005; 65 (1) 147-149
  • 101 Willie JT, Lim MM, Bennett RE, Azarion AA, Schwetye KE, Brody DL. Controlled cortical impact traumatic brain injury acutely disrupts wakefulness and extracellular orexin dynamics as determined by intracerebral microdialysis in mice. J Neurotrauma 2012; 29 (10) 1908-1921
  • 102 Fan JS, Huang HH, Chen YC , et al. Emergency department neurologic deterioration in patients with spontaneous intracerebral hemorrhage: incidence, predictors, and prognostic significance. Acad Emerg Med 2012; 19 (2) 133-138
  • 103 Takeuchi S, Suzuki G, Takasato Y , et al. Prognostic factors in patients with primary brainstem hemorrhage. Clin Neurol Neurosurg 2012;
  • 104 Wessels T, Möller-Hartmann W, Noth J, Klötzsch C. CT findings and clinical features as markers for patient outcome in primary pontine hemorrhage. AJNR Am J Neuroradiol 2004; 25 (2) 257-260
  • 105 Wijdicks EF, St Louis E. Clinical profiles predictive of outcome in pontine hemorrhage. Neurology 1997; 49 (5) 1342-1346
  • 106 Tokgoz S, Demirkaya S, Bek S , et al. Clinical properties of regional thalamic hemorrhages. J Stroke Cerebrovasc Dis 2012;
  • 107 Arboix A, Rodríguez-Aguilar R, Oliveres M, Comes E, García-Eroles L, Massons J. Thalamic haemorrhage vs internal capsule-basal ganglia haemorrhage: clinical profile and predictors of in-hospital mortality. BMC Neurol 2007; 7: 32
  • 108 Shah SD, Kalita J, Misra UK, Mandal SK, Srivastava M. Prognostic predictors of thalamic hemorrhage. J Clin Neurosci 2005; 12 (5) 559-561
  • 109 Flemming KD, Wijdicks EF, Li H. Can we predict poor outcome at presentation in patients with lobar hemorrhage?. Cerebrovasc Dis 2001; 11 (3) 183-189
  • 110 Song Z, Zheng W, Zhu H , et al. Prediction of coma and anisocoria based on computerized tomography findings in patients with supratentorial intracerebral hemorrhage. Clin Neurol Neurosurg 2012; 114 (6) 634-638
  • 111 Nishikawa T, Ueba T, Kajiwara M, Miyamatsu N, Yamashita K. A priority treatment of the intraventricular hemorrhage (IVH) should be performed in the patients suffering intracerebral hemorrhage with large IVH. Clin Neurol Neurosurg 2009; 111 (5) 450-453
  • 112 Stein M, Luecke M, Preuss M, Boeker DK, Joedicke A, Oertel MF. Spontaneous intracerebral hemorrhage with ventricular extension and the grading of obstructive hydrocephalus: the prediction of outcome of a special life-threatening entity. Neurosurgery 2010; 67 (5) 1243-1251 , discussion 1252
  • 113 Milhorat TH, Clark RG, Hammock MK. Experimental hydrocephalus. 2. Gross pathological findings in acute and subacute obstructive hydrocephalus in the dog and monkey. J Neurosurg 1970; 32 (4) 390-399
  • 114 Clark RG, Milhorat TH. Experimental hydrocephalus. 3. Light microscopic findings in acute and subacute obstructive hydrocephalus in the monkey. J Neurosurg 1970; 32 (4) 400-413
  • 115 Rosen DS, Macdonald RL. Subarachnoid hemorrhage grading scales: a systematic review. Neurocrit Care 2005; 2 (2) 110-118
  • 116 St Julien J, Bandeen-Roche K, Tamargo RJ. Validation of an aneurysmal subarachnoid hemorrhage grading scale in 1532 consecutive patients. Neurosurgery 2008; 63 (2) 204-210 , discussion 210–211
  • 117 Servadei F, Murray GD, Teasdale GM , et al. Traumatic subarachnoid hemorrhage: demographic and clinical study of 750 patients from the European brain injury consortium survey of head injuries. Neurosurgery 2002; 50 (2) 261-267 , discussion 267–269
  • 118 Tian HL, Xu T, Hu J, Cui YH, Chen H, Zhou LF. Risk factors related to hydrocephalus after traumatic subarachnoid hemorrhage. Surg Neurol 2008; 69 (3) 241-246 , discussion 246
  • 119 Taylor CJ, Robertson F, Brealey D , et al. Outcome in poor grade subarachnoid hemorrhage patients treated with acute endovascular coiling of aneurysms and aggressive intensive care. Neurocrit Care 2011; 14 (3) 341-347
  • 120 Grote E, Hassler W. The critical first minutes after subarachnoid hemorrhage. Neurosurgery 1988; 22 (4) 654-661
  • 121 Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2004; 24 (8) 916-925
  • 122 Petzold A, Keir G, Kay A, Kerr M, Thompson EJ. Axonal damage and outcome in subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2006; 77 (6) 753-759
  • 123 Ang BT, Tan WL, Lim J, Ng I. Cerebrospinal fluid orexin in aneurysmal subarachnoid haemorrhage - a pilot study. J Clin Neurosci 2005; 12 (7) 758-762
  • 124 Schuiling WJ, Rinkel GJ, Walchenbach R, de Weerd AW. Disorders of sleep and wake in patients after subarachnoid hemorrhage. Stroke 2005; 36 (3) 578-582
  • 125 Bussière M, Young GB. Anoxic-ischemic encephalopathy and strokes causing impaired consciousness. Neurol Clin 2011; 29 (4) 825-836
  • 126 Bassetti C, Mathis J, Gugger M, Lovblad KO, Hess CW. Hypersomnia following paramedian thalamic stroke: a report of 12 patients. Ann Neurol 1996; 39 (4) 471-480
  • 127 Kumral E, Evyapan D, Balkir K, Kutluhan S. Bilateral thalamic infarction. Clinical, etiological and MRI correlates. Acta Neurol Scand 2001; 103 (1) 35-42
  • 128 Scammell TE, Nishino S, Mignot E, Saper CB. Narcolepsy and low CSF orexin (hypocretin) concentration after a diencephalic stroke. Neurology 2001; 56 (12) 1751-1753
  • 129 Rudelli R, Deck JH. Selective traumatic infarction of the human anterior hypothalamus. Clinical anatomical correlation. J Neurosurg 1979; 50 (5) 645-654
  • 130 Park KC, Yoon SS, Chang DI , et al. Amnesic syndrome in a mammillothalamic tract infarction. J Korean Med Sci 2007; 22 (6) 1094-1097
  • 131 Harada S, Fujita-Hamabe W, Tokuyama S. Effect of orexin-A on post-ischemic glucose intolerance and neuronal damage. J Pharmacol Sci 2011; 115 (2) 155-163
  • 132 Kitamura E, Hamada J, Kanazawa N , et al. The effect of orexin-A on the pathological mechanism in the rat focal cerebral ischemia. Neurosci Res 2010; 68 (2) 154-157
  • 133 Kasner SE, Demchuk AM, Berrouschot J , et al. Predictors of fatal brain edema in massive hemispheric ischemic stroke. Stroke 2001; 32 (9) 2117-2123
  • 134 Berrouschot J, Sterker M, Bettin S, Köster J, Schneider D. Mortality of space-occupying ('malignant') middle cerebral artery infarction under conservative intensive care. Intensive Care Med 1998; 24 (6) 620-623
  • 135 Vahedi K, Hofmeijer J, Juettler E , et al; DECIMAL, DESTINY, and HAMLET investigators. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol 2007; 6 (3) 215-222
  • 136 Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB. HAMLET investigators. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol 2009; 8 (4) 326-333
  • 137 Smith ML, Auer RN, Siesjö BK. The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol 1984; 64 (4) 319-332
  • 138 Lin CS, Polsky K, Nadler JV, Crain BJ. Selective neocortical and thalamic cell death in the gerbil after transient ischemia. Neuroscience 1990; 35 (2) 289-299
  • 139 Takemoto O, Tomimoto H, Yanagihara T. Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral ischemia in gerbils. Stroke 1995; 26 (9) 1639-1648
  • 140 Takahashi S, Higano S, Ishii K , et al. Hypoxic brain damage: cortical laminar necrosis and delayed changes in white matter at sequential MR imaging. Radiology 1993; 189 (2) 449-456
  • 141 Skelding KA, Spratt NJ, Fluechter L, Dickson PW, Rostas JA. αCaMKII is differentially regulated in brain regions that exhibit differing sensitivities to ischemia and excitotoxicity. J Cereb Blood Flow Metab 2012; 32 (12) 2181-2192
  • 142 Belousov AB. Novel model for the mechanisms of glutamate-dependent excitotoxicity: role of neuronal gap junctions. Brain Res 2012; 1487: 123-130
  • 143 Obrenovitch TP, Garofalo O, Harris RJ , et al. Brain tissue concentrations of ATP, phosphocreatine, lactate, and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion. J Cereb Blood Flow Metab 1988; 8 (6) 866-874
  • 144 Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest 2000; 106 (6) 723-731
  • 145 Bright R, Mochly-Rosen D. The role of protein kinase C in cerebral ischemic and reperfusion injury. Stroke 2005; 36 (12) 2781-2790
  • 146 Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 2012; 33 (2) 223-237
  • 147 Wang Y, Song JH, Denisova JV, Park WM, Fontes JD, Belousov AB. Neuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury. J Neurosci 2012; 32 (2) 713-725
  • 148 Sun C, Meng Q, Zhang L, Wang H, Quirion R, Zheng W. Glutamate attenuates IGF-1 receptor tyrosine phosphorylation in mouse brain: possible significance in ischemic brain damage. Neurosci Res 2012; 74 (3-4) 290-297
  • 149 Chung IY, Benveniste EN. Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol 1990; 144 (8) 2999-3007
  • 150 Hammer MD, Krieger DW. Hypothermia for acute ischemic stroke: not just another neuroprotectant. Neurologist 2003; 9 (6) 280-289
  • 151 Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation 2012; 9: 211
  • 152 Yasuda Y, Shimoda T, Uno K , et al. Temporal and sequential changes of glial cells and cytokine expression during neuronal degeneration after transient global ischemia in rats. J Neuroinflammation 2011; 8: 70
  • 153 Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: The FOUR score. Ann Neurol 2005; 58 (4) 585-593
  • 154 Levy DE, Caronna JJ, Singer BH, Lapinski RH, Frydman H, Plum F. Predicting outcome from hypoxic-ischemic coma. JAMA 1985; 253 (10) 1420-1426
  • 155 Greer DM, Yang J, Scripko PD , et al. Clinical examination for outcome prediction in nontraumatic coma. Crit Care Med 2012; 40 (4) 1150-1156
  • 156 Rittenberger JC, Sangl J, Wheeler M, Guyette FX, Callaway CW. Association between clinical examination and outcome after cardiac arrest. Resuscitation 2010; 81 (9) 1128-1132
  • 157 Weiss N, Tadie JM, Faugeras F, Diehl JL, Fagon JY, Guerot E. Can fast-component of nystagmus on caloric vestibulo-ocular responses predict emergence from vegetative state in ICU?. J Neurol 2012; 259 (1) 70-76
  • 158 Mueller-Jensen A, Neunzig HP, Emskötter T. Outcome prediction in comatose patients: significance of reflex eye movement analysis. J Neurol Neurosurg Psychiatry 1987; 50 (4) 389-392
  • 159 O'Connor G, Ryan T, Redmond J, Doherty C. The value of motor response versus neuroimaging in predicting outcome post cardiac arrest: a retrospective study. J Neurol 2010; 257 (8) 1400-1401
  • 160 Starke RM, Komotar RJ, Otten ML , et al. Predicting long-term outcome in poor grade aneurysmal subarachnoid haemorrhage patients utilising the Glasgow Coma Scale. J Clin Neurosci 2009; 16 (1) 26-31
  • 161 Zhang Y, Su YY, Haupt WF , et al. Application of electrophysiologic techniques in poor outcome prediction among patients with severe focal and diffuse ischemic brain injury. J Clin Neurophysiol 2011; 28 (5) 497-503
  • 162 Roest A, van Bets B, Jorens PG, Baar I, Weyler J, Mercelis R. The prognostic value of the EEG in postanoxic coma. Neurocrit Care 2009; 10 (3) 318-325
  • 163 Kawai M, Thapalia U, Verma A. Outcome from therapeutic hypothermia and EEG. J Clin Neurophysiol 2011; 28 (5) 483-488
  • 164 Oddo M, Rossetti AO. Predicting neurological outcome after cardiac arrest. Curr Opin Crit Care 2011; 17 (3) 254-259
  • 165 Young GB. The EEG in coma. J Clin Neurophysiol 2000; 17 (5) 473-485
  • 166 Amzica F, Kroeger D. Cellular mechanisms underlying EEG waveforms during coma. Epilepsia 2011; 52 (Suppl. 08) 25-27
  • 167 Rothstein TL. The utility of median somatosensory evoked potentials in anoxic-ischemic coma. Rev Neurosci 2009; 20 (3-4) 221-233
  • 168 Chabok SY, Moghadam AD, Saneei Z, Amlashi FG, Leili EK, Amiri ZM. Neuron-specific enolase and S100BB as outcome predictors in severe diffuse axonal injury. J Trauma Acute Care Surg 2012; 72 (6) 1654-1657
  • 169 Daubin C, Quentin C, Allouche S , et al. Serum neuron-specific enolase as predictor of outcome in comatose cardiac-arrest survivors: a prospective cohort study. BMC Cardiovasc Disord 2011; 11: 48
  • 170 Mlynash M, Campbell DM, Leproust EM , et al. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest. Stroke 2010; 41 (8) 1665-1672
  • 171 Tshibanda L, Vanhaudenhuyse A, Boly M , et al. Neuroimaging after coma. Neuroradiology 2010; 52 (1) 15-24
  • 172 Soddu A, Vanhaudenhuyse A, Demertzi A , et al. Resting state activity in patients with disorders of consciousness. Funct Neurol 2011; 26 (1) 37-43
  • 173 Noirhomme Q, Soddu A, Lehembre R , et al. Brain connectivity in pathological and pharmacological coma. Front Syst Neurosci 2010; 4: 160
  • 174 Bonnelle V, Leech R, Kinnunen KM , et al. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci 2011; 31 (38) 13442-13451
  • 175 Sharp DJ, Beckmann CF, Greenwood R , et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain 2011; 134 (Pt 8) 2233-2247
  • 176 Norton L, Hutchison RM, Young GB, Lee DH, Sharpe MD, Mirsattari SM. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 2012; 78 (3) 175-181
  • 177 Kotchoubey B, Merz S, Lang S , et al. Global functional connectivity reveals highly significant differences between the vegetative and the minimally conscious state. J Neurol 2013; 260 (4) 975-983
  • 178 Monti MM, Vanhaudenhuyse A, Coleman MR , et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med 2010; 362 (7) 579-589
  • 179 Nayak P, Mahapatra AK. Single photon emission computed tomography scanning: a predictor of outcome in vegetative state of head injury. J Neurosci Rural Pract 2011; 2 (1) 12-16
  • 180 Han HS, Park J, Kim JH, Suk K. Molecular and cellular pathways as a target of therapeutic hypothermia: pharmacological aspect. Curr Neuropharmacol 2012; 10 (1) 80-87
  • 181 Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in mammalian central nervous system. J Cereb Blood Flow Metab 2003; 23 (5) 513-530
  • 182 Tymianski M, Sattler R, Zabramski JM, Spetzler RF. Characterization of neuroprotection from excitotoxicity by moderate and profound hypothermia in cultured cortical neurons unmasks a temperature-insensitive component of glutamate neurotoxicity. J Cereb Blood Flow Metab 1998; 18 (8) 848-867
  • 183 Phillips KF, Deshpande LS, Delorenzo RJ. Hypothermia reduces calcium entry via the N-methyl-D-aspartate and ryanodine receptors in cultured hippocampal neurons. Eur J Pharmacol 2013; 698 (1-3) 186-192
  • 184 Weng Y, Sun S. Therapeutic hypothermia after cardiac arrest in adults: mechanism of neuroprotection, phases of hypothermia, and methods of cooling. Crit Care Clin 2012; 28 (2) 231-243
  • 185 Kawamura Y, Yamada K, Masago A, Katano H, Matsumoto T, Mase M. Hypothermia modulates induction of hsp70 and c-jun mRNA in the rat brain after subarachnoid hemorrhage. J Neurotrauma 2000; 17 (3) 243-250
  • 186 Arrich J, Holzer M, Havel C, Müllner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev 2012; 9: CD004128
  • 187 Field JM, Hazinski MF, Sayre MR , et al. Part 1: executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (18) (Suppl. 03) S640-S656
  • 188 Fox JL, Vu EN, Doyle-Waters M, Brubacher JR, Abu-Laban R, Hu Z. Prophylactic hypothermia for traumatic brain injury: a quantitative systematic review. CJEM 2010; 12 (4) 355-364
  • 189 Groysman LI, Emanuel BA, Kim-Tenser MA, Sung GY, Mack WJ. Therapeutic hypothermia in acute ischemic stroke. Neurosurg Focus 2011; 30 (6) E17
  • 190 Blanpied TA, Clarke RJ, Johnson JW. Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 2005; 25 (13) 3312-3322
  • 191 Giacino JT, Whyte J, Bagiella E , et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med 2012; 366 (9) 819-826
  • 192 Ishida T, Obara Y, Kamei C. Studies on wakefulness-promoting effect of memantine in rats. Behav Brain Res 2010; 206 (2) 274-278
  • 193 Kutzing MK, Luo V, Firestein BL. Protection from glutamate-induced excitotoxicity by memantine. Ann Biomed Eng 2012; 40 (5) 1170-1181
  • 194 Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T. Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 2010; 114 (1) 259-270
  • 195 Martin RT, Whyte J. The effects of methylphenidate on command following and yes/no communication in persons with severe disorders of consciousness: a meta-analysis of n-of-1 studies. Am J Phys Med Rehabil 2007; 86 (8) 613-620
  • 196 Moein H, Khalili HA, Keramatian K. Effect of methylphenidate on ICU and hospital length of stay in patients with severe and moderate traumatic brain injury. Clin Neurol Neurosurg 2006; 108 (6) 539-542
  • 197 Kumar R. Approved and investigational uses of modafinil: an evidence-based review. Drugs 2008; 68 (13) 1803-1839
  • 198 Ishizuka T, Murotani T, Yamatodani A. Modanifil activates the histaminergic system through the orexinergic neurons. Neurosci Lett 2010; 483 (3) 193-196
  • 199 Urbano FJ, Leznik E, Llinás RR. Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proc Natl Acad Sci U S A 2007; 104 (30) 12554-12559
  • 200 Rivera VM. Modafinil for the treatment of diminished responsiveness in a patient recovering from brain surgery. Brain Inj 2005; 19 (9) 725-727
  • 201 Clauss R, Nel W. Drug induced arousal from the permanent vegetative state. NeuroRehabilitation 2006; 21 (1) 23-28
  • 202 Clauss RP, Güldenpfennig WM, Nel HW, Sathekge MM, Venkannagari RR. Extraordinary arousal from semi-comatose state on zolpidem. A case report. S Afr Med J 2000; 90 (1) 68-72
  • 203 Shames JL, Ring H. Transient reversal of anoxic brain injury-related minimally conscious state after zolpidem administration: a case report. Arch Phys Med Rehabil 2008; 89 (2) 386-388
  • 204 Machado C, Estévez M, Pérez-Nellar J , et al. Autonomic, EEG, and behavioral arousal signs in a PVS case after zolpidem intake. Can J Neurol Sci 2011; 38 (2) 341-344
  • 205 Clauss RP, Nel WH. Effect of zolpidem on brain injury and diaschisis as detected by 99mTc HMPAO brain SPECT in humans. Arzneimittelforschung 2004; 54 (10) 641-646
  • 206 Whyte J, Myers R. Incidence of clinically significant responses to zolpidem among patients with disorders of consciousness: a preliminary placebo controlled trial. Am J Phys Med Rehabil 2009; 88 (5) 410-418
  • 207 Snyman N, Egan JR, London K , et al. Zolpidem for persistent vegetative state—a placebo-controlled trial in pediatrics. Neuropediatrics 2010; 41 (5) 223-227
  • 208 Sarà M, Pistoia F, Mura E, Onorati P, Govoni S. Intrathecal baclofen in patients with persistent vegetative state: 2 hypotheses. Arch Phys Med Rehabil 2009; 90 (7) 1245-1249
  • 209 Sarà M, Sacco S, Cipolla F , et al. An unexpected recovery from permanent vegetative state. Brain Inj 2007; 21 (1) 101-103
  • 210 Taira T, Hori T. Intrathecal baclofen in the treatment of post-stroke central pain, dystonia, and persistent vegetative state. Acta Neurochir Suppl (Wien) 2007; 97 (Pt 1) 227-229
  • 211 Oyama H, Kito A, Maki H, Hattori K, Tanahashi K. Consciousness recovery induced by intrathecal baclofen administration after subarachnoid hemorrhage-two case reports. Neurol Med Chir (Tokyo) 2010; 50 (5) 386-390
  • 212 Tsubokawa T, Yamamoto T, Katayama Y, Hirayama T, Maejima S, Moriya T. Deep-brain stimulation in a persistent vegetative state: follow-up results and criteria for selection of candidates. Brain Inj 1990; 4 (4) 315-327
  • 213 Yamamoto T, Katayama Y, Obuchi T, Kobayashi K, Oshima H, Fukaya C. Deep brain stimulation and spinal cord stimulation for vegetative state and minimally conscious state. World J Neurosurg 2012; 1: S1878-S8750
  • 214 Cohadon F, Richer E. [Deep cerebral stimulation in patients with post-traumatic vegetative state. 25 cases]. Neurochirurgie 1993; 39 (5) 281-292
  • 215 Schiff ND, Giacino JT, Kalmar K , et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 2007; 448 (7153) 600-603
  • 216 Momose T, Matsui T, Kosaka N , et al. Effect of cervical spinal cord stimulation (cSCS) on cerebral glucose metabolism and blood flow in a vegetative patient assessed by positron emission tomography (PET) and single photon emission computed tomography (SPECT). Radiat Med 1989; 7 (5) 243-246
  • 217 Liu JT, Tan WC, Liao WJ. Effects of electrical cervical spinal cord stimulation on cerebral blood perfusion, cerebrospinal fluid catecholamine levels, and oxidative stress in comatose patients. Acta Neurochir Suppl (Wien) 2008; 101: 71-76
  • 218 Visocchi M, Della Pepa GM, Esposito G , et al. Spinal cord stimulation and cerebral hemodynamics: updated mechanism and therapeutic implications. Stereotact Funct Neurosurg 2011; 89 (5) 263-274
  • 219 Yamamoto T, Katayama Y, Obuchi T, Kobayashi K, Oshima H, Fukaya C. Spinal cord stimulation for treatment of patients in the minimally conscious state. Neurol Med Chir (Tokyo) 2012; 52 (7) 475-481
  • 220 Ye M, Hayar A, Strotman B, Garcia-Rill E. Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons. J Neurophysiol 2010; 103 (5) 2417-2432
  • 221 Mena-Segovia J, Bolam JP. Phasic modulation of cortical high-frequency oscillations by pedunculopontine neurons. Prog Brain Res 2011; 193: 85-92
  • 222 Quattrochi J, Datta S, Hobson JA. Cholinergic and non-cholinergic afferents of the caudolateral parabrachial nucleus: a role in the long-term enhancement of rapid eye movement sleep. Neuroscience 1998; 83 (4) 1123-1136
  • 223 Vittoz NM, Berridge CW. Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology 2006; 31 (2) 384-395
  • 224 McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 1992; 39 (4) 337-388
  • 225 Xi M, Chase MH. The injection of hypocretin-1 into the nucleus pontis oralis induces either active sleep or wakefulness depending on the behavioral state when it is administered. Sleep 2010; 33 (9) 1236-1243
  • 226 Kirouac GJ, Parsons MP, Li S. Orexin (hypocretin) innervation of the paraventricular nucleus of the thalamus. Brain Res 2005; 1059 (2) 179-188
  • 227 Del Cid-Pellitero E, Jones BE. Immunohistochemical evidence for synaptic release of GABA from melanin-concentrating hormone containing varicosities in the locus coeruleus. Neuroscience 2012; 223: 269-276
  • 228 Henny P, Jones BE. Vesicular glutamate (VGlut), GABA (VGAT), and acetylcholine (VACht) transporters in basal forebrain axon terminals innervating the lateral hypothalamus. J Comp Neurol 2006; 496 (4) 453-467