Synthesis 2013; 45(11): 1497-1504
DOI: 10.1055/s-0033-1338431
paper
© Georg Thieme Verlag Stuttgart · New York

Fast and Efficient Bromination of Aromatic Compounds with Ammonium Bromide and Oxone

Mameda Naresh
a   I&PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160387   Email: narendern33@yahoo.co.in
,
Macharla Arun Kumar
a   I&PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160387   Email: narendern33@yahoo.co.in
,
Marri Mahender Reddy
a   I&PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160387   Email: narendern33@yahoo.co.in
,
Peraka Swamy
a   I&PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160387   Email: narendern33@yahoo.co.in
,
Jagadeesh Babu Nanubolu
b   X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
,
Nama Narender*
a   I&PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160387   Email: narendern33@yahoo.co.in
› Author Affiliations
Further Information

Publication History

Received: 05 February 2013

Accepted after revision: 28 March 2013

Publication Date:
14 May 2013 (online)


Abstract

A highly efficient, rapid and regioselective protocol was developed for the ring bromination of aromatic compounds under mild conditions with ammonium bromide as a source of bromine source and Oxone® (potassium peroxysulfate) as an oxidant. No metal catalyst or acidic additive is required. A variety of aromatic compounds, including methoxy, hydroxy, amino, and alkyl arenes, reacted smoothly to give the corresponding monobrominated products in good to excellent yields in very short reaction times. Moreover, dibromination of deactivated anilines to give the corresponding dibromides proceeded in high yields. Interestingly, 1-(2-naphthyl)ethanone provided a ring-brominated product.

Supporting Information

 
  • References

    • 1a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. 2nd ed., Vol. 1 Wiley; New York: 1999: 715
    • 1b Podgoršek A, Zupan M, Iskra J. Angew. Chem. Int. Ed. 2009; 48: 8424
    • 2a Dagani MJ, Barda HJ, Benya TJ, Sanders DC. Ullmann’s Encyclopedia of Industrial Chemistry: Bromine Compounds. Wiley-VCH; Weinheim: 2002
    • 2b Taylor R. Electrophilic Aromatic Substitution . Wiley; New York: 1990
    • 2c Gao C, Tao X, Qian Y, Huang J. Chem. Commun. 2003; 1444
    • 3a Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PJ. Wiley-VCH; Weinheim: 1998
    • 3b Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E. Wiley; New York: 2002
    • 4a Cannon KC, Krow GR In Handbook of Grignard Reagents . Silverman GS, Rakita PE. Marcel Dekker; New York: 1996: 497
    • 4b Davis SG. Organotransition Metal Chemistry: Applications to Organic Synthesis. Pergamon; Oxford: 1982
    • 5a Muathen HA. J. Org. Chem. 1992; 57: 2740
    • 5b Butler A, Walker JV. Chem. Rev. 1993; 93: 1937
    • 5c Gribble GW. Chem. Soc. Rev. 1999; 28: 335
  • 6 De la Mare PB. Electrophilic Halogenation: Reaction Pathways Involving Attack by Electrophilic Halogens on Unsaturated Compounds. Cambridge University Press; Cambridge: 1976
  • 7 Kumar L, Mahajan T, Agarwal DD. Green Chem. 2011; 13: 2187
  • 8 Joshi G, Adimurthy S. Ind. Eng. Chem. Res. 2011; 50: 12271
  • 9 Sharma RK, Sharma C. Tetrahedron Lett. 2010; 51: 4415
    • 10a Rajagopal R, Jarikote DV, Lahoti RJ, Daniel T, Srinivasan KV. Tetrahedron Lett. 2003; 44: 1815
    • 10b Pingali SR. K, Madhav M, Jursic BS. Tetrahedron Lett. 2010; 51: 1383
  • 11 Hosseinzadeh R, Tajbakhsh M, Mohadjerani M, Lasemi Z. Synth. Commun. 2010; 40: 868
  • 12 Venkateswarlu K, Suneel K, Das B, Reddy KN, Reddy TS. Synth. Commun. 2009; 39: 215
  • 13 Borikar SP, Daniel T, Paul V. Tetrahedron Lett. 2009; 50: 1007
  • 14 Firouzabadi H, Iranpoor N, Kazemi S, Ghaderi A, Garzan A. Adv. Synth. Catal. 2009; 351: 1925
  • 15 Gavara L, Boisse T, Rigo B, Henichart JP. Tetrahedron 2008; 64: 4999
  • 16 Chhattise PK, Ramaswamy AV, Waghmode SB. Tetrahedron Lett. 2008; 49: 189
  • 17 Moriuchi T, Yamaguchi M, Kikushima K, Hirao T. Tetrahedron Lett. 2007; 48: 2667
  • 18 Ganchegui B, Leitner W. Green Chem. 2007; 9: 26
  • 19 Suresh P, Annalakshmi S, Pitchumani K. Tetrahedron Lett. 2007; 63: 4959
  • 20 Adibi H, Hajipour AR, Hashemi M. Tetrahedron Lett. 2007; 48: 1255
  • 21 Das B, Venkateswarlu K, Krishnaiah M, Holla H. Tetrahedron Lett. 2006; 47: 8693
  • 22 Raju T, Kulangiappar K, Kulandainathan MA, Uma U, Malini R, Muthukumaran A. Tetrahedron Lett. 2006; 47: 4581
  • 23 Heravi MM, Abdolhosseini N, Oskooie HA. Tetrahedron Lett. 2005; 46: 8959
  • 24 Kavala V, Naik S, Patel BK. J. Org. Chem. 2005; 70: 4267
  • 25 Le ZG, Chen ZC, Hu Y, Zheng QG. Chin. Chem. Lett. 2005; 16: 1007
  • 26 Chrétien J.-M, Zammattio F, LeGrognec E, Paris M, Cahingt B, Montavon G, Quintard J.-P. J. Org. Chem. 2005; 70: 2870
  • 27 Salazar J, Dorta R. Synlett 2004; 1318
    • 28a Krishna Mohan KV. V, Narender N. Synthesis 2012; 44: 15
    • 28b Kumar MA, Rohitha CN, Reddy MM, Swamy P, Narender N. Tetrahedron Lett. 2012; 53: 191
    • 28c Swamy P, Kumar MA, Reddy MM, Narender N. Chem. Lett. 2012; 41: 432
    • 28d Reddy MM, Kumar MA, Swamy P, Narender N. Tetrahedron Lett. 2011; 52: 6554
    • 28e Kumar MA, Rohitha CN, Narender N. Tetrahedron Lett. 2012; 53: 1401
    • 29a Narender N, Krishna Mohan KV. V, Kulakarni SJ, Raghavan KV. J. Chem. Res. 2003; 597
    • 29b Kumar MA, Rohitha CN, Kulakarni SJ, Narender N. Synthesis 2010; 1629
  • 30 Crystallographic data for compound 6 have been deposited with the accession number CCDC-901849 and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
  • 31 Dhakshinamoorthy A, Sharmila A, Pitchumani K. Chem. Eur. J. 2010; 16: 1128
  • 32 Gooßen LJ, Linder C, Rodríguez N, Lange PP, Fromm A. Chem. Commun. 2009; 46: 7173
  • 33 Hamilton CJ, Fairlamb AH, Eggleston IM. J. Chem. Soc., Perkin Trans. 1 2002; 1115
  • 34 Dell’Acqua M, Abbiati G, Arcadi A, Rossi E. Org. Biomol. Chem. 2011; 9: 7836
  • 35 Yang L, Lu Z, Stahl SS. Chem. Commun. 2009;  6460
  • 36 Kalgutkar AS, Kozak KR, Crews BC, Hochgesang GP. Jr, Marnett LJ. J. Med. Chem. 1998; 41: 4800
  • 37 Maurer S, Liu W, Zhang X, Jiang Y, Ma D. Synlett 2010; 976
  • 38 Kikushima K, Moriuchi T, Hirao T. Tetrahedron Lett. 2010; 51: 340
  • 39 Wang J, Wang W, Li J.-H. Green Chem. 2010; 12: 2124
  • 40 Islam SM, Roy AS, Mondal P, Tuhina K, Mobarak M, Mondal J. Tetrahedron Lett. 2012; 53: 127
  • 41 Yin W.-P, Shi M. Tetrahedron 2005; 61: 10861
  • 42 Xu L, Wang Y, Wen X, Ding C, Zhang G, Liang X. Synlett 2011; 2265
  • 43 Glende C, Schmitt E, Erdinger L, Engelhardt G, Boche G. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 2001; 498: 19
  • 44 Yang X, Kajiyama S, Fang J.-K, Xu F, Uemura Y, Koumura N, Hara K, Orita A, Otera J. Bull. Chem. Soc. Jpn. 2012; 85:  687
  • 45 Suh YG, Lee YS, Min KH, Park OH, Kim JK, Seung HS. J. Med. Chem. 2005; 48: 18
  • 46 Podgoršek A, Stavber S, Zupan M, Iskra J. Tetrahedron 2009; 65: 4429
  • 47 de Costa BR, Lewin A, Schoenheimer JA, Skolnick P, Rice KR. Heterocycles 1991; 32: 2343
  • 48 Cai L, Brouwer C, Sinclair K, Cuevas J, Pike VW. Synthesis 2006; 133
  • 49 Shen X, Hyde AM, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14076
  • 50 Wasylishen R, Schaefer T, Schwenk R. Can. J. Chem. 1970; 48: 2885
  • 51 Cama LD, Heck JV. US 5455239, 1995
  • 52 Nakhai A, Stensland B, Svensson PH, Bergman J. Eur. J. Org. Chem. 2010; 6588
  • 53 Brown N, Luo D, Decapo JA, Buszek KR. Tetrahedron Lett. 2009; 50: 7113