Zentralbl Chir 2015; 140(1): 74-82
DOI: 10.1055/s-0032-1328590
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Allgemeine Grundlagen der Tumorbiologie in der Viszeralchirurgie

General Principles of Tumour Biology in Visceral Surgery
G. Emons
Allgemein-, Viszeral- und Kinderchirurgie, Universitätsmedizin Göttingen, Deutschland
,
M. Ghadimi
Allgemein-, Viszeral- und Kinderchirurgie, Universitätsmedizin Göttingen, Deutschland
,
M. Grade
Allgemein-, Viszeral- und Kinderchirurgie, Universitätsmedizin Göttingen, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
05 August 2013 (online)

Zusammenfassung

In den letzten Jahren konnten auf dem Gebiet der onkologischen Grundlagenforschung große Fortschritte erzielt werden. Insbesondere wurden die Entstehung und die charakteristischen Eigenschaften von Tumorzellen zunehmend entschlüsselt. Das Verständnis dieser molekularen Grundlagen ist entscheidend für die zukünftige Entwicklung und Etablierung neuer, zielgerichteter Therapiestrategien sowie deren Integration in den klinischen Alltag (personalisierte Medizin). Zudem spielt die Tumorgenetik insbesondere auf dem Gebiet der hereditären Krebssyndrome eine entscheidende Rolle sowohl in der Diagnostik als auch für die Therapieplanung. Ziel dieser Übersichtsarbeit ist es, allgemeine Grundlagen der Tumorgenetik aus Sicht des Viszeralchirurgen aufzuzeigen und zu erläutern, auch wenn aufgrund der Komplexität der Materie eine allumfassende Zusammenstellung nicht möglich ist.

Abstract

Within the last decade, there has been a tremendous progress in understanding the molecular basis of cancer. In particular, the development and the characteristic features of cancer cells are being increasingly understood. The understanding of these molecular characteristics is mandatory for the development of novel, targeted therapeutic strategies and their integration into clinical practice. In addition, tumour genetics play a critically important role for hereditary cancer syndromes, with respect to both diagnostics and clinical decision-making. The aim of this review is to highlight general principles of tumour genetics from a visceral surgeonʼs point of view, although a comprehensive summary of all aspects would be beyond the scope of this article due to the complexity of the topic.

 
  • Literatur

  • 1 Blay JY, Le Cesne A, Cassier PA et al. Gastrointestinal stromal tumors (GIST): a rare entity, a tumor model for personalized therapy, and yet ten different molecular subtypes. Discov Med 2012; 13: 357-367
  • 2 Ballestrero A, Garuti A, Cirmena G et al. Patient-tailored treatments with anti-EGFR monoclonal antibodies in advanced colorectal cancer: KRAS and beyond. Curr Cancer Drug Targets 2012; 12: 316-328
  • 3 Aretz S. The differential diagnosis and surveillance of hereditary gastrointestinal polyposis syndromes. Dtsch Arztebl Int 2010; 107: 163-173
  • 4 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70
  • 5 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674
  • 6 Hayman MJ, Enrietto PJ. Cell transformation by the epidermal growth factor receptor and v-erbB. Cancer Cells 1991; 3: 302-307
  • 7 Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell 2004; 6: 313-319
  • 8 Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13: 283-296
  • 9 Cho KR, Vogelstein B. Genetic alterations in the adenoma–carcinoma sequence. Cancer 1992; 70: 1727-1731
  • 10 Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol 2011; 6: 479-507
  • 11 Vousden KH, Prives C. Blinded by the light: the growing complexity of p 53. Cell 2009; 137: 413-431
  • 12 Partanen JI, Nieminen AI, Klefstrom J. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc. Cell Cycle 2009; 8: 716-724
  • 13 Okada T, Lopez-Lago M, Giancotti FG. Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 2005; 171: 361-371
  • 14 Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009; 9: 501-507
  • 15 Chan SR, Blackburn EH. Telomeres and telomerase. Philos Trans R Soc Lond B Biol Sci 2004; 359: 109-121
  • 16 Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev 2008; 88: 557-579
  • 17 Blackburn EH. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed Engl 2010; 49: 7405-7421
  • 18 Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis 2010; 31: 9-18
  • 19 Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-674
  • 20 Folkman J, Hanahan D. Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 1991; 22: 339-347
  • 21 Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58-62
  • 22 Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005; 233: 706-720
  • 23 Brabletz T, Jung A, Spaderna S. Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer 2005; 5: 744-749
  • 24 Brabletz T, Hlubek F, Spaderna S et al. Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 2005; 179: 56-65
  • 25 Day DW, Morson BC. The adenoma-carcinoma sequence. Major Probl Pathol 1978; 10: 58-71
  • 26 Vogelstein B, Fearon ER, Hamilton SR et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525-532
  • 27 Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759-767
  • 28 Sjoblom T, Jones S et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268-274
  • 29 Wood LD, Parsons DW et al. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318: 1108-1113
  • 30 The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330-337
  • 31 Seshagiri S, Stawiski EW et al. Recurrent R-spondin fusions in colon cancer. Nature 2012; 488: 660-664
  • 32 Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17: 45-51
  • 33 Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 2002; 34: 255-268
  • 34 Moss SF, Liu TC, Petrotos A et al. Inward growth of colonic adenomatous polyps. Gastroenterology 1996; 111: 1425-1432
  • 35 Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer 2003; 3: 459-465
  • 36 Seiden-Long IM, Brown KR, Shih W et al. Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer. Oncogene 2006; 25: 91-102
  • 37 Drabsch Y, Dijke P. TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 2012; 31: 553-568
  • 38 Baker SJ, Preisinger AC, Jessup JM et al. p 53 gene mutations occur in combination with 17 p allelic deletions as late events in colorectal tumorigenesis. Cancer Res 1990; 50: 7717-7722
  • 39 Schneider R, Schneider C, Kloor M et al. Lynch syndrome: clinical, pathological, and genetic insights. Langenbecks Arch Surg 2012; 397: 513-525
  • 40 Umar A, Boland CR, Terdiman JP et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004; 96: 261-268
  • 41 Jasperson KW, Tuohy TM, Neklason DW et al. Hereditary and familial colon cancer. Gastroenterology 2010; 138: 2044-2058
  • 42 Claes K, Dahan K, Tejpar S et al. The genetics of familial adenomatous polyposis (FAP) and MutYH-associated polyposis (MAP). Acta Gastroenterol Belg 2011; 74: 421-426
  • 43 Wolthuis AM, Leonard D, Kartheuser A et al. Different surgical strategies in the treatment of familial adenomatous polyposis: whatʼs the role of the ileorectal anastomosis?. Acta Gastroenterol Belg 2011; 74: 435-437
  • 44 Glascock MJ, Carty SE. Multiple endocrine neoplasia type 1: fresh perspective on clinical features and penetrance. Surg Oncol 2002; 11: 143-150
  • 45 Ivo D, Corset L, Desbourdes L et al. Menin controls the concentration of retinoblastoma protein. Cell Cycle 2011; 10: 166-168
  • 46 Trump D, Farren B, Wooding C et al. Clinical studies of multiple endocrine neoplasia type 1 (MEN1). QJM 1996; 89: 653-669
  • 47 Akerstrom G, Stalberg P. Surgical management of MEN-1 and − 2: state of the art. Surg Clin North Am 2009; 89: 1047-1068
  • 48 Thakker RV. Multiple endocrine neoplasia type 1 (MEN1). Best Pract Res Clin Endocrinol Metab 2010; 24: 355-370
  • 49 Thakker RV, Newey PJ, Walls GV et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 2012; 97: 2990-3011
  • 50 Moline J, Eng C. Multiple endocrine neoplasia type 2: an overview. Genet Med 2011; 13: 755-764
  • 51 Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005; 16: 441-467
  • 52 Wohllk N, Schweizer H, Erlic Z et al. Multiple endocrine neoplasia type 2. Best Pract Res Clin Endocrinol Metab 2011; 24: 371-387
  • 53 Waguespack SG, Rich TA, Perrier ND et al. Management of medullary thyroid carcinoma and MEN2 syndromes in childhood. Nat Rev Endocrinol 2011; 7: 596-607
  • 54 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730-737
  • 55 Simons BD, Clevers H. Stem cell self-renewal in intestinal crypt. Exp Cell Res 2011; 317: 2719-2724
  • 56 Dalerba P, Dylla SJ, Park IK et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 2007; 104: 10158-10163
  • 57 Gupta PB, Onder TT, Jiang G et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138: 645-659
  • 58 Adams JM, Strasser A. Is tumor growth sustained by rare cancer stem cells or dominant clones?. Cancer Res 2008; 68: 4018-4021
  • 59 Schepers AG, Snippert HJ, Stange DE et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 2012; 337: 730-735
  • 60 Driessens G, Beck B, Caauwe A et al. Defining the mode of tumour growth by clonal analysis. Nature 2012; 488: 527-530
  • 61 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854
  • 62 He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522-531
  • 63 Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259-269
  • 64 Gaedcke J, Grade M, Camps J et al. The Rectal Cancer microRNAome – microRNA Expression in Rectal Cancer and Matched Normal Mucosa. Clin Cancer Res 2012; 18: 4919-4930
  • 65 Goel A, Boland CR. Epigenetics of Colorectal Cancer. Gastroenterology 2012; 143: 1442-1460
  • 66 Caplen NJ, Mousses S. Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann N Y Acad Sci 2003; 1002: 56-62
  • 67 Grade M, Hummon AB, Camps J et al. A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets. Int J Cancer 2011; 128: 1069-1079
  • 68 Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309-322
  • 69 Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell 2010; 140: 460-476
  • 70 Gaengel K, Genove G, Armulik A et al. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 2009; 29: 630-638
  • 71 Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 2010; 316: 1324-1331
  • 72 Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141: 39-51
  • 73 Lander ES. Initial impact of the sequencing of the human genome. Nature 2011; 470: 187-197
  • 74 Gonzaga-Jauregui C, Lupski JR, Gibbs RA. Human genome sequencing in health and disease. Annu Rev Med 2012; 63: 35-61
  • 75 Torkamani A, Scott-Van Zeeland AA, Topol EJ et al. Annotating individual human genomes. Genomics 2011; 98: 233-241
  • 76 Hunter DJ, Khoury MJ, Drazen JM. Letting the genome out of the bottle – will we get our wish?. N Engl J Med 2008; 358: 105-107
  • 77 Prainsack B, Wolinsky H. Direct-to-consumer genome testing: opportunities for pharmacogenomics research?. Pharmacogenomics 2010; 11: 651-655
  • 78 Khoury MJ, McBride CM, Schully SD et al. The Scientific Foundation for personal genomics: recommendations from a National Institutes of Health-Centers for Disease Control and Prevention multidisciplinary workshop. Genet Med 2009; 11: 559-567
  • 79 Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519-525
  • 80 Gaedcke J, Liersch T, Hess C et al. [Rectal cancer: current status of multimodal therapy – when and how]?. Zentralbl Chir 2011; 136: 334-342
  • 81 Ghadimi BM, Grade M, Difilippantonio MJ et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol 2005; 23: 1826-1838
  • 82 Gaedcke J, Grade M, Jung K et al. KRAS and BRAF mutations in patients with rectal cancer treated with preoperative chemoradiotherapy. Radiother Oncol 2010; 94: 76-81
  • 83 Spitzner M, Emons G, Kramer F et al. A gene expression signature for chemoradiosensitivity of colorectal cancer cells. Int J Radiat Oncol Biol Phys 2012; 78: 1184-1192
  • 84 Jo P, Jung K, Grade M et al. CpG island methylator phenotype infers a poor disease-free survival in locally advanced rectal cancer. Surgery 2012; 151: 564-570
  • 85 Kendziorra E, Ahlborn K, Spitzner M et al. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis 2011; 32: 1824-1831
  • 86 Grade M, Wolff HA, Gaedcke J et al. The molecular basis of chemoradiosensitivity in rectal cancer: implications for personalized therapies. Langenbecks Arch Surg 2012; 397: 543-555
  • 87 Heining C, von Kalle C. Translationale Onkologie – Effiziente Umsetzung onkologischer Grundlagenforschung. Zentralbl Chir 2012; 137: 1-3