Synlett 2012; 23(19): 2758-2762
DOI: 10.1055/s-0032-1317342
cluster
© Georg Thieme Verlag Stuttgart · New York

Silver-Catalyzed Direct Addition of Terminal Alkynes to Simple Cyclic Ketones in Water

Zhenhua Jia
a   Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada   Fax: +1(514)3983797   Email: cj.li@mcgill.ca
b   Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Xingshu Li
b   Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Albert S. C. Chan
b   Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Chao-Jun Li*
a   Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada   Fax: +1(514)3983797   Email: cj.li@mcgill.ca
› Author Affiliations
Further Information

Publication History

Received: 02 August 2012

Accepted after revision: 10 September 2012

Publication Date:
12 October 2012 (online)


Abstract

The first catalytic addition of terminal alkynes to simple cyclic ketones in water catalyzed by silver was developed. Cyclic ketones were reacted with terminal alkynes efficiently in water to give the corresponding propargyl alcohols.

 
  • References

  • 1 For a monograph, see: Blomberg C. The Barbier Reaction and Related One-Step Processes . In Reactivity and Structure: Concepts in Organic Chemistry . Hafner K, Lehn JM, Rees CW, von Ragué Schleyer P, Trost BM, Zahradnîk R. Springer Verlag; Berlin: 1993

    • For reviews, see:
    • 2a Chan T.-H, Li L, Yang Y, Lu W. Clean Solvents, Alternative Media for Chemical Reactions and Processing, ACS Symposium Series 819. Abraham MA, Moens L. Washington: 2002: 166
    • 2b Li C.-J, Chan T.-H. Comprehensive Organic Reactions in Aqueous Media. Wiley; New York: 2007

    • For selected examples from our lab, see:
    • 2c Li C.-J. Tetrahedron 1996; 52: 5643
    • 2d Li C.-J. Chem. Rev. 2005; 105: 3095
    • 2e Meng Y, Li C.-J. J. Am. Chem. Soc. 2000; 120: 9538
    • 2f Chan T.-H, Yang Y, Li C.-J. J. Org. Chem. 1999; 64: 4452
    • 2g Venkatraman S, Li C.-J. Tetrahedron Lett. 2001; 42: 781
    • 2h Li C.-J, Chen DL, Lu YQ, Haberman JX, Mague JT. J. Am. Chem. Soc. 1996; 118: 4216
    • 2i Chan T.-H, Li C.-J, Wei ZY. J. Chem. Soc., Chem. Commun. 1990; 505
    • 2j Li C.-J, Zhang WC. J. Am. Chem. Soc. 1998; 120: 9102
    • 2k Keh CC. K, Wei C, Li C.-J. J. Am. Chem. Soc. 2003; 125: 4062
    • 3a Trost BM. Science 1991; 254: 1471
    • 3b Trost BM. Angew. Chem. Int. Ed. 1995; 34: 259

      For examples, see:
    • 4a Carreira EM, Frantz DE, Fässler R, Tomooka CS. Acc. Chem. Res. 2000; 33: 373
    • 4b Trost BM, Sorum MT, Chan C, Harms AE, Ruhter G. J. Am. Chem. Soc. 1997; 119: 698
    • 4c Yamaguchi M, Hayashi A, Minami T. J. Org. Chem. 1991; 56: 4091
    • 4d Han Y, Huang Y.-Z. Tetrahedron Lett. 1995; 36: 7277
    • 4e Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963
    • 5a Wei C, Li C.-J. Green Chem. 2002; 4: 39
    • 5b Chen L, Li C.-J. Adv. Synth. Catal. 2006; 348: 1459
  • 6 Li C.-J. Acc. Chem. Res. 2010; 43: 581
    • 7a Li C.-J, Wei C. Chem. Commun. 2002; 268

    • For asymmetric addition, see:
    • 7b Wei C, Li C.-J. J. Am. Chem. Soc. 2002; 124: 5638
    • 7c Wei C, Mague JT, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5749
    • 8a Wei C, Li C.-J. J. Am. Chem. Soc. 2003; 125: 9584
    • 8b Huang B, Yao X, Li C.-J. Adv. Synth. Catal. 2006; 348: 1528
    • 8c Wei CM, Li ZG, Li C.-J. Org. Lett. 2003; 5: 4473
    • 8d For a recent review, see: Yoo W.-J, Zhao L, Li C.-J. Aldrichimica Acta 2011; 44: 43
    • 8e Wei C, Li Z, Li C.-J. Synlett 2004; 1472
    • 8f Zani L, Bolm C. Chem. Commun. 2006; 4263
    • 8g Peshkov VA, Pereshivko OP, Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3702
  • 9 Zhang J, Wei C, Li C.-J. Tetrahedron Lett. 2002; 43: 5731
  • 10 Chen L, Li C.-J. Org. Lett. 2004; 6: 3151
    • 11a Chen L, Li C.-J. Tetrahedron Lett. 2004; 45: 2771
    • 11b Chen L, Li C.-J. Chem. Commun. 2004; 2362

    • See also:
    • 11c Carreira EM, Knopfel TF. J. Am. Chem. Soc. 2003; 125: 6054
    • 11d Knopfel TF, Zarotti P, Ichikawa T, Carreira EM. J. Am. Chem. Soc. 2005; 127: 9682
    • 11e Zhou L, Chen L, Skouta R, Li C.-J. Org. Biomol. Chem. 2008; 6: 2969
  • 12 For a review, see: Li Z, Carpretto DA, He C. In Progress in Inorganic Chemistry . Vol. 56. Karlin KD. John Wiley & Sons; New York: 2009
    • 13a Yao X, Li C.-J. Org. Lett. 2005; 7: 4395
    • 13b Deng G, Li C.-J. Synlett 2008; 1571
    • 13c Yu M, Skouta R, Zhou L, Jiang H.-F, Yao X, Li C.-J. J. Org. Chem. 2009; 74: 3378
  • 14 Fu X.-P, Liu L, Wang D, Chen Y.-J, Li C.-J. Green Chem. 2011; 13: 549
  • 15 Yao X, Li C.-J. Org. Lett. 2006; 8: 1953
    • 16a Billingsley K, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3358

    • For reviews, see:
    • 16b Mauger CC, Mignani GA. Aldrichimica Acta 2006; 39: 17
    • 16c Schlummer B, Scholz U. Adv. Synth. Catal. 2004; 346: 1599
  • 17 General Reaction Procedure: Degassed CH2Cl2 (0.25 mL) was added to a microwave tube containing the ligand RuPhos (23.2 mg, 0.05 mmol) and AgCl (3.6 mg, 0.025 mmol) under argon. The resulting suspension was stirred at r.t. until a clear, colorless solution was obtained; then the solvent was removed under vacuum. Cyclohexanone (1a; 26 μL, 0.25 mmol), DBU (7.5 μL, 0.05 mmol) and degassed H2O (0.5 mL) were subsequently added under argon followed by the addition of phenylacetylene (2a; 104 μL, 1 mmol) using a syringe pump over 12 h. The reaction mixture was stirred for another 12 h at 100 °C, then cooled and extracted with EtOAc (3 × 10 ml). The combined organic phase was concentrated and purified by flash column chromatography on silica gel (hexane–EtOAc, 10:1) to give the desired product 3a as a white solid (40 mg, 80%). The NMR data are in full agreement with those previously reported in the literature.18 1H NMR (400 MHz, CDCl3): δ = 7.41–7.43 (m, 2 H), 7.26–7.30 (m, 3 H), 1.99–2.03 (m, 3 H), 1.57–1.77 (m, 7 H), 1.28 (m, 1 H). 13C NMR (CDCl3, 75 MHz) δ = 131.7, 128.3, 128.1, 122.9, 93.8, 83.6, 72.2, 43.2, 28.0, 22.3.��
  • 18 Yasukawa T, Miyamura H, Kobayashi S. Org. Biomol. Chem. 2011; 9: 6208