Synlett 2012(2): 227-232  
DOI: 10.1055/s-0031-1290070
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Exploring α-Chromonyl Nitrones as 1,5-Dipoles

Kathrin Wittsteina,b, Ana B. Garcíaa, Markus Schürmannc, Kamal Kumar*a,b
a Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
Fax: +49(231)1332496; e-Mail: Kamal.Kumar@mpi-dortmund.mpg.de;
b Technische Universität Dortmund, Fachbereich Chemie, Chemische Biologie, 44221 Dortmund, Germany
c Technische Universität Dortmund, Anorganische Chemie, 44221 Dortmund, Germany
Weitere Informationen

Publikationsverlauf

Received 17 October 2011
Publikationsdatum:
03. Januar 2012 (online)

Abstract

N-Phenyl-C-chromonyl nitrones 1 and the allenoate zwitterion 2, generated by addition of phosphine to acetylenedicarboxylates, undergo a cascade reaction sequence involving an unprecedented [5+3] annulation followed by deoxygenative rearrangement leading to dihydropyridine-fused benzopyrones. Unusual electronic control by the N-substituents of 1 directs the annulation pathway, leading to two different ring-systems.

    References and Notes

  • 1a Ertl P. Jelfs S. Muhlbacher J. Schuffenhauer A. Selzer P. J. Med. Chem.  2006,  49:  4568 
  • 1b Breinbauer R. Vetter IR. Waldmann H. Angew. Chem. Int. Ed.  2002,  41:  2879 
  • 1c Böhm H.-J. Flohr A. Stahl M. Drug Discovery Today: Technol.  2004,  1:  217 
  • 1d Bemis GW. Murcko MA. J. Med. Chem.  1996,  39:  2887 
  • 2a Kumar K. Waldmann H. Angew. Chem. Int. Ed.  2009,  48:  3224 
  • 2b Wetzel S. Klein K. Renner S. Rauh D. Oprea TI. Mutzel P. Waldmann H. Nat. Chem. Biol.  2009,  5:  696 
  • 2c Renner S. van Otterlo WAL. Seoane MD. Mocklinghoff S. Hofmann B. Wetzel S. Schuffenhauer A. Ertl P. Oprea TI. Steinhilber D. Brunsveld L. Rauh D. Waldmann H. Nat. Chem. Biol.  2009,  5:  585 
  • 2d Nandy JP. Prakesch M. Khadem S. Reddy PT. Sharma U. Arya P. Chem. Rev.  2009,  109:  1999 
  • 3 Ganesan A. Curr. Opin. Chem. Biol.  2008,  12:  306 
  • 4a Waldmann H. Khedkar V. Dückert H. Schürmann M. Oppel IM. Kumar K. Angew. Chem. Int. Ed.  2008,  47:  6869 
  • 4b Dückert H. Khedkar V. Waldmann H. Kumar K. Chem. Eur. J.  2011,  17:  5130 
  • 4c Baskar B. Dakas P.-Y. Kumar K. Org. Lett.  2011,  13:  1988 
  • 4d Wittstein K. Kumar K. Waldmann H. Angew. Chem. Int. Ed.  2011,  50:  9076 
  • 4e Waldmann H. Bruss H. Dückert H. Kumar K. Tetrahedron Lett.  2011,  52:  2265 
  • 5a Ishar MPS. Singh G. Kumar K. Singh R. Tetrahedron  2000,  56:  7817 
  • 5b Boruah AK. Prajapati D. Sandhu JS. J. Chem. Soc., Perkin Trans. 1  1987,  1995 
  • 6a Lu X. Zhang C. Xu Z. Acc. Chem. Res.  2001,  34:  535 
  • 6b Nair V. Menon RS. Sreekanth AR. Abhilash N. Biju AT. Acc. Chem. Res.  2006,  39:  520 
  • 6c Methot JL. Roush WR. Adv. Synth. Catal.  2004,  346:  1035 
  • 7a Dai M. Wang Z. Danishefsky SJ. Tetrahedron Lett.  2008,  49:  6613 
  • 7b Lopez-Calle E. Höfler J. Eberbach W. Liebigs Ann.  1996,  1855 
  • For reviews on cycloaddition reactions of nitrones, see:
  • 8a Kanemase S. Heterocycles  2010,  82:  87 
  • 8b Nguyen TB. Martel A. Gaulon C. Dhal R. Dujardin G. Org. Prep. Proced. Int.  2010,  42:  387 
  • 8c Bokach NA. Russ. Chem. Rev.  2010,  79:  89 
  • 8d Brandi A. Cardona F. Cicchi S. Cordero FM. Goti A. Chem. Eur. J.  2009,  15:  7808 
  • 8e Rueck-Braun K. Freysoldt THE. Wierschem F. Chem. Soc. Rev.  2005,  34:  507 
  • 8f Banerji A. Bandyopadhyay D. J. Indian Chem. Soc.  2004,  81:  817 
  • 8g Merino P. Nitrones and Analogues, In Science of Synthesis   George Thieme Verlag; Stuttgart: 2004.  Chap. 13. p.511 
  • 8h Black DStC. Crozier RF. Davis VC. Synthesis  1975,  205 
  • 9a Ishar MPS. Kumar K. Singh R. Tetrahedron Lett.  1998,  39:  6547 
  • 9b Ghosh T. Bandyopadhyay C. Tetrahedron Lett.  2004,  45:  6169 
  • 10 Kumar K. Kapoor R. Kapur A. Ishar MPS. Org. Lett.  2000,  2:  2023 
  • 11 González-Cruz D. Tejedor D. de Armas P. Moralesa EQ. García-Tellado F. Chem. Commun.  2006,  2798 
  • For deoxygenation of nitrones with phosphines and phosphites, see:
  • 16a Cividino P. Dheu-Andries M.-L. Ou J. Milet A. Py S. Toy PH. Tetrahedron Lett.  2009,  50:  7038 
  • 16b Horner L. Hoffmann H. Angew. Chem.  1956,  68:  473 
  • 16c Agolini F. Bonnett R. Can. J. Chem.  1962,  40:  181 
  • 16d Merino P. Delso I. Tejero T. Cardona F. Marradi M. Faggi E. Parmeggiani C. Goti A. Eur. J. Org. Chem.  2008,  2929 
  • 16e Milliet P. Lusinchi X. Tetrahedron  1979,  35:  43 
  • 17 Molnar A. Bucsi I. Bartok M. Tetrahedron  1992,  48:  4929 
  • 18a Bayón P. de March P. Figueredo M. Font J. Medrano J. Tetrahedron: Asymmetry  2000,  11:  4269 
  • 18b Sustmann R. Pure Appl. Chem.  1974,  40:  569 
  • 18c Gilchrist TL. Storr RC. In Organic Reactions and Orbital Symmetry   Cambridge University; Cambridge: 1972.  p.132 
  • 18d Fleming I. Frontier Orbitals and Organic Chemical Reactions   Wiley; London: 1976.  p.148-161  
  • 18e Padwa A. Fisera L. Koehler KF. Rodriguez A. Wong GSK. J. Org. Chem.  1984,  49:  276 
  • 19a Acharjee N. Banerji A. Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor.  2010,  49:  1444 
  • 19b Gothelf KV. Hazell RG. Jørgensen KA. Acta Chem. Scand.  1997,  50:  1234 
  • 19c Banerji A. Biswas PK. Gupta M. Saha R. Banerji J. J. Indian Chem. Soc.  2007,  84:  1004 
  • 19d Koyano K. Suzuki H. Bull. Chem. Soc. Jpn.  1969,  42:  3306 
  • 19e Koyano K. Suzuki H. Tetrahedron Lett.  1968,  9:  1859 
12

Crystallographic data for 8a has been deposited at the Cambridge Crystallographic Data Centre (CCDC-848674). Copies of the data can be obtained free of charge at www.ccdc.cam.uk/data_request/cif or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ [fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk]

13

Representative procedure for the synthesis of dihydro-pyridine fused benzopyrones 8a: To a solution of nitrone 1f-i (94 mg, 0.34 mmol) in anhydrous CH2Cl2 (10 mL) was added dimethyl acetylenedicarboxylate (83 µL, 0.67 mmol, 2 equiv), followed by triphenylphosphine (88 mg, 0.4 mmol, 1.2 equiv). The resulting mixture was stirred at r.t. for 48 h. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (EtOAc-petroleum ether, 15-18%) to give 8a (48 mg, 0.12 mmol, 36% yield) as a yellow solid

14

Compound 8a: R f = 0.35 (EtOAc-petroleum ether, 40%); mp 226-236 ˚C; ¹H NMR (400 MHz, CDCl3): δ = 8.31 (d, J = 1.8 Hz, 1 H), 7.87 (d, J = 1.9 Hz, 1 H,), 7.51-7.44 (m, 2 H), 7.41-7.34 (m, 4 H), 7.21 (d, J = 8.0 Hz, 1 H), 6.10 (d, J = 1.7 Hz, 1 H), 3.87 (s, 3 H), 3.74 (s, 3 H), 2.39 (s, 3 H); ¹³C NMR (100 MHz, CDCl3): δ = 175.54, 170.29, 164.85, 156.97, 154.45, 147.13, 143.13, 135.75, 133.75, 129.83, 127.71, 125.89, 121.47, 120.24, 117.34, 105.59, 84.38, 61.98, 53.11, 51.62, 20.64; HRMS (ESI): m/z [M + H]+ calcd for C23H20NO6: 406.12851; found: 406.12806

15

Compound 8d: R f = 0.37 (EtOAc-petroleum ether, 30%); ¹H NMR (400 MHz, CDCl3): δ = 8.30 (d, J = 1.7 Hz, 1 H), 8.03 (s, 1 H), 7.48 (dd, J = 7.7 Hz, 2 H), 7.40-7.32 (m, 3 H), 7.21 (s, 1 H), 6.10 (d, J = 1.7 Hz, 1 H), 3.87 (s, 3 H), 3.74 (s, J = 5.1 Hz, 3 H), 2.45 (s, 3 H); ¹³C NMR (100 MHz, CDCl3): δ = 174.24, 170.18, 164.68, 155.54, 154.47, 147.20, 143.81, 143.09, 130.19, 129.89, 127.88, 126.06, 121.55, 119.81, 119.66, 105.13, 84.92, 62.02, 53.19, 51.71, 20.70; HRMS (ESI): m/z [M + H]+ calcd for C23H19ClNO6: 440.08954; found: 440.08909; m/z [M + H]+ calcd for C23H19Cl³7NO6: 442.08659; found: 442.08630