Laryngorhinootologie 2011; 90(3): 168-177
DOI: 10.1055/s-0030-1270472
CME-Fortbildung

© Georg Thieme Verlag KG Stuttgart · New York

Moderne Methoden der Biomarkerentwicklung: eine Chance für die individualisierte Tumortherapie?

Innovations in Biomarker Development: a Pathway Towards Individualized Cancer Therapy?C. A. Dumitru1 , T. K. Hoffmann1 , G. Lehnerdt1 , R. Zeidler2 , S. Lang1 , S. Brandau1
  • 1Klinik für Hals-Nasen-Ohrenheilkunde, Universität Duisburg-Essen
  • 2Klinik für Hals-Nasen-Ohrenheilkunde, Ludwig-Maximilians-Universität, München
Further Information

Publication History

Publication Date:
04 March 2011 (online)

Zusammenfassung

Trotz erheblicher medizinischer und wissenschaftlicher Fortschritte in der jüngeren Vergangenheit bleiben Krebserkrankungen eine der Haupttodesursachen in den Industrieländern. Neben bildgebenden Verfahren rücken für Früherkennung und Verlaufskontrolle der Erkrankung zunehmend molekular-diagnostische Strategien in den Vordergrund. Deshalb wurden in den vergangenen Jahren verstärkte Anstrengungen unternommen, um Biomarker für Diagnose, Prognose und Therapieansprechen zu entwickeln. Die Komplexität und Herausforderung bei diesen Studien liegt in der Tatsache begründet, dass viele verschiedene Molekülklassen potenzielle Biomarker sein können und Biomarker von den Tumorzellen selbst oder von Wirtszellen als Antwort auf das Tumorwachstum gebildet werden können. In dieser Übersichtsarbeit werden wichtige aktuelle Entwicklungen der Biomarkerforschung zusammengefasst. Die Autoren diskutieren grundsätzliche Quellgewebe und -zellen potenzieller Biomarker sowie wichtige Nachweismethoden einschließlich erreichter Fortschritte und noch bestehender Hindernisse. Darüber hinaus geben sie einen Einblick in wichtige Biomarker zur Verbesserung von Diagnose und Prognose von Kopf-Hals-Tumoren. Abschließend diskutieren sie vor dem Hintergrund der Weiterentwicklung individualisierter Therapiekonzepte einige Biomarker mit potenziellen Einsatzmöglichkeiten in diesem Bereich.

Abstract

Despite multiple medical and scientific achievements, cancer remains a leading cause of death worldwide. Next to imaging technologies, molecular methods for early detection and for monitoring of the course of disease are of increasing interest. Thus, over the past years numerous studies have focused on the identification of biomarkers for cancer diagnosis, prognosis and response to therapy. The study of biomarkers seems to pose a high degree of complexity because many different types of molecules may, in principle, serve as potential biomarkers. In addition, these molecules can be produced either by the tumor or by the tumor-host in response to the presence of cancer. In this review the authors will address several major topics encompassed by the field of biomarker research. They will discuss the primary sources from which biomarker candidates can be ‘mined’ as well as the technological or methodological challenges associated with identification of biomarkers. Furthermore, the review will focus on current biomarker candidates for head and neck squamous cell carcinoma (HNSCC), with particular interest on several molecules yielding potential relevance for detection and prognosis of this type of cancer. Finally, several biomarker candidates with predictive potential for the response to therapy of HNSCC patients will be discussed, since identifying such molecules is crucial for developing individually-tailored and improved therapeutic strategies.

Literatur

  • 1 Parkin DM, Bray F, Ferlay J et al. Global cancer statistics, 2002.  CA Cancer J Clin. 2005;  55 74-108
  • 2 Lang S, Wollenberg B, Dellian M et al. [Clinical and epidemiological data of patients with malignomas of the head and neck].  Laryngorhinootologie. 2002;  81 499-508
  • 3 Gillison ML, Koch WM, Capone RB et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers.  J Natl Cancer Inst. 2000;  92 709-720
  • 4 Lehnerdt G, Hoffmann TK, Mattheis S et al. [Diagnostic and prognostic biomarkers in head and neck squamous cell carcinoma.].  HNO. 2010;  58 713-723
  • 5 Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects.  Mol Cell Proteomics. 2002;  1 845-867
  • 6 Kondo T. Tissue proteomics for cancer biomarker development: laser microdissection and 2D-DIGE.  BMB Rep. 2008;  41 626-634
  • 7 Kulasingam V, Diamandis EP. Tissue culture-based breast cancer biomarker discovery platform.  Int J Cancer. 2008;  123 2007-2012
  • 8 Frese KK, Tuveson DA. Maximizing mouse cancer models.  Nat Rev Cancer. 2007;  7 645-658
  • 9 Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers.  Nature. 2008;  452 571-579
  • 10 Rauch J, Gires O. SEREX, Proteomex, AMIDA. and beyond: Serological screening technologies for target identification.  Proteomics Clin Appl. 2008;  2 355-371
  • 11 Kelley LC, Shahab S, Weed SA. Actin cytoskeletal mediators of motility and invasion amplified and overexpressed in head and neck cancer.  Clin Exp Metastasis. 2008;  25 289-304
  • 12 Hirabayashi J. Concept, strategy and realization of lectin-based glycan profiling.  J Biochem. 2008;  144 139-147
  • 13 Hathaway B, Landsittel DP, Gooding W et al. Multiplexed analysis of serum cytokines as biomarkers in squamous cell carcinoma of the head and neck patients.  Laryngoscope. 2005;  115 522-527
  • 14 Linkov F, Lisovich A, Yurkovetsky Z et al. Early detection of head and neck cancer: development of a novel screening tool using multiplexed immunobead-based biomarker profiling.  Cancer Epidemiol Biomarkers Prev. 2007;  16 102-107
  • 15 Li Y, Zhou X, St John M et al. RNA profiling of cell-free saliva using microarray technology.  J Dent Res. 2004;  83 199-203
  • 16 Mork J, Lie AK, Glattre E et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck.  N Engl J Med. 2001;  344 1125-1131
  • 17 Veltman JA, Hopman AH, Bot FJ et al. Detection of chromosomal aberrations in cytologic brush specimens from head and neck squamous cell carcinoma.  Cancer. 1997;  81 309-314
  • 18 D’Souza G, Kreimer AR, Viscidi R et al. Case-control study of human papillomavirus and oropharyngeal cancer.  N Engl J Med. 2007;  356 1944-1956
  • 19 Begum S, Gillison ML, Ansari-Lari MA et al. Detection of human papillomavirus in cervical lymph nodes: a highly effective strategy for localizing site of tumor origin.  Clin Cancer Res. 2003;  9 6469-6475
  • 20 Lau SK, Hsu CS, Sham JS et al. The cytological diagnosis of nasopharyngeal carcinoma using a silk swab stick.  Cytopathology. 1991;  2 239-246
  • 21 Tune CE, Liavaag PG, Freeman JL et al. Nasopharyngeal brush biopsies and detection of nasopharyngeal cancer in a high-risk population.  J Natl Cancer Inst. 1999;  91 796-800
  • 22 Lo YM, Chan AT, Chan LY et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA.  Cancer Res. 2000;  60 6878-6881
  • 23 Grandis JR, Tweardy DJ. TGF-alpha and EGFR in head and neck cancer.  J Cell Biochem Suppl. 1993;  17F 188-191
  • 24 Psyrri A, Yu Z, Weinberger PM et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis.  Clin Cancer Res. 2005;  11 5856-5862
  • 25 Olaussen KA, Dunant A, Fouret P et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy.  N Engl J Med. 2006;  355 983-991
  • 26 Handra-Luca A, Hernandez J, Mountzios G et al. Excision repair cross complementation group 1 immunohistochemical expression predicts objective response and cancer-specific survival in patients treated by Cisplatin-based induction chemotherapy for locally advanced head and neck squamous cell carcinoma.  Clin Cancer Res. 2007;  13 3855-3859
  • 27 Brizel DM, Dodge RK, Clough RW et al. Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome.  Radiother Oncol. 1999;  53 113-117
  • 28 Beasley NJ, Leek R, Alam M et al. Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients.  Cancer Res. 2002;  62 2493-2497
  • 29 Erler JT, Bennewith KL, Nicolau M et al. Lysyl oxidase is essential for hypoxia-induced metastasis.  Nature. 2006;  440 1222-1226
  • 30 Sok JC, Coppelli FM, Thomas SM et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting.  Clin Cancer Res. 2006;  12 5064-5073

Korrespondenzadresse

Prof. Sven Brandau

Experimentelle Forschungsabteilung

der Klinik für Hals-Nasen-

Ohrenheilkunde

Universität Duisburg-Essen

Hufelandstraße 55

45122 Essen

Email: Sven.Brandau@uk-essen.de