Zentralbl Chir 2011; 137(3): 264-269
DOI: 10.1055/s-0030-1262604
Übersicht

© Georg Thieme Verlag KG Stuttgart ˙ New York

Akzidentelle Hypothermie beim Polytrauma

Accidental Hypothermia in Multiple Trauma PatientsP. Mommsen1 , C. Zeckey1 , M. Frink1 , C. Krettek1 , F. Hildebrand1
  • 1Medizinische Hochschule Hannover, Unfallchirurgische Klinik, Hannover, Deutschland
Further Information

Publication History

Publication Date:
28 February 2011 (online)

Zusammenfassung

Hintergrund: Definitionsgemäß versteht man unter einer Hypothermie einen Abfall der Körperkerntemperatur (KKT) auf unter 35 °C. Ätiologisch unterscheidet man eine endogene, therapeutische und akzidentelle Hypothermie. Mit einer Inzidenz von bis zu 66 % bei Aufnahme im Schockraum ist die akzidentelle Hypothermie eine häufige Komplikation bei Schwerverletzten. Beim Polytrauma scheint es, ab einer kritischen KKT von 34 °C zu einer erhöhten Inzidenz posttraumatischer Komplikationen und einer signifikanten Abnahme der Überlebensrate zu kommen. Bei einer KKT von unter 32 °C wird in der Literatur eine Mortalität von bis zu 100 % beschrieben. Material und Methoden: Die wesentlichen pathophysiologischen Effekte einer Hypothermie betreffen das Herz-Kreislauf-, Gerinnungs- und Immunsystem. Kardiovaskulär kommt es zunächst bei einer milden Hypothermie (35–32 °C) zu einer Steigerung der sympathischen Aktivität mit Vasokonstriktion, Tachykardie und Anstieg des Cardiac Output. Über eine zunehmende Arrhythmie und Bradykardie entsteht bei der schweren Hypothermie (< 32 °C) letztlich eine Asystolie. Die hypothermieinduzierte Koagulopathie ist gekennzeichnet durch eine Störung der zellulären und plasmatischen Gerinnung mit hieraus resultierendem, signifikant erhöhtem Blutverlust und damit gesteigertem Volumen- und Transfusionsbedarf. Durch die Hemmung der posttraumatischen, pro-inflammatorischen Immunantwort bei gleichzeitiger Stimulation anti-inflammatorischer Immunreaktionen wirkt die Hypothermie protektiv gegenüber der Entwicklung einer überschießenden systemischen Inflammation bei zugleich jedoch gesteigerter Infektanfälligkeit. Ergebnisse: Aufgrund der ungünstigen Effekte der akzidentellen Hypothermie beim Polytrauma ist eine effektive Wiedererwärmung essenziell für die posttraumatische Verbesserung der Organfunktionen und das Überleben. Eine aggressive Wiedererwärmung (> 0,5 °C / h) scheint dabei mit einer gesteigerten Inzidenz posttraumatischer Komplikationen und einer erhöhten Spätmortalität assoziiert zu sein, weswegen sie hypothermen Patienten im hämorrhagischen Schock vorbehalten sein sollte. Schlussfolgerung: Die akzidentelle Hypothermie stellt aufgrund ihrer Häufigkeit und negativen Auswirkungen ein wesentliches Problem beim Polytrauma dar und sollte durch eine frühzeitige sowie effiziente Wiedererwärmung ausgeglichen werden. Ob eine therapeutische Hypothermie mit ihren in tierexperimentellen Traumamodellen nachgewiesenen günstigen Effekten auch beim polytraumatisierten Patienten nach initialer Stabilisierung protektive Auswirkungen haben könnte, muss Gegenstand weiterer experimenteller und klinischer Studien sein. 

Abstract

Background: Hypothermia, defined as a body core temperature below 35 °C, could be divided into an endogeneous, therapeutic and accidental hypothermia. At admission in the emergency room multiple trauma patients show a hypothermic core temperature in up to 66 %. A core temperature below 34 °C seems to be critical in these patients as this temperature limit has been demonstrated to be associated with an increased risk for post-traumatic complications and a decreased survival. In polytraumatised patients with a core temperature below 32 °C a mortality rate of 100 % has been described. Material and Methods: The main pathophysio­log­ical effects of hypothermia concern the haemo­dynamic, coagulatory and immune systems. Mild hypothermia (35–32 °C) leads to a vasoconstric­tion, tachycardia and increased cardiac output. After an increasing arrhythmia and bradycardia severe hypothermia (< 32 °C) finally results in a cardiac arrest. Hypothermia-induced coagulopathy comprises a dysfunction of the cellular and plasmatic coagulation with an increased blood loss. Due to the attenuation of the post-traumatic, pro-inflammatory immune response and en­hance­ment of anti-inflammatory reactions, hypothermia counteracts an overwhelming systemic inflammation, concomitantly resulting in an in­creased susceptibility for infectious complica­tions. Results: Because of the negative effects of the ­accidental hypothermia, effective rewarming is essential for adequate bleeding control and successful resuscitation. As aggressive rewarming (> 0.5 °C / h) has been reported to be associated with an increased mortality during the further course, this procedure should only be applied in hypothermic multiple trauma patients with haemorrhagic shock. Conclusion: Accidental hypothermia represents a serious problem in multiple trauma patients due to its frequency and negative pathophysiological effects. Therefore, early and effective re­warm­ing is essential in the treatment of hypothermic trauma patients. Possible protective effects of a therapeutic hypothermia in the treatment of trauma patients after initial resuscitation and operative bleeding control have to be clarified in further experimental and clinical studies. 

Literatur

  • 1 Segers M J, Diephuis J C, van Kesteren R G et al. Hypothermia in trauma patients.  Unfallchirurg. 1998;  101 742-749
  • 2 Tsuei B J, Kearney P A. Hypothermia in the trauma patient.  Injury. 2004;  35 7-15
  • 3 Stoner H B. Responses to trauma: fifty years of ebb and flow.  Circ Shock. 1993;  39 316-319
  • 4 Beilman G J, Blondet J J, Nelson T R et al. Early hypothermia in severely ­injured trauma patients is a significant risk factor for multiple organ dysfunction syndrome but not mortality.  Ann Surg. 2009;  249 845-850
  • 5 Jurkovich G J, Greiser W B, Luterman A et al. Hypothermia in trauma victims: an ominous predictor of survival.  J Trauma. 1987;  27 1019-1024
  • 6 Gentilello L M, Jurkovich G J, Stark M S et al. Is hypothermia in the victim of major trauma protective or harmful? A randomized, prospective study.  Ann Surg. 1997;  226 439-447 discussion 447–439
  • 7 Reuler J B. Hypothermia: pathophysiology, clinical settings, and management.  Ann Intern Med. 1978;  89 519-527
  • 8 Seekamp A, Hildebrand F, van Griensven M et al. [Role of adenosine triphosphate (ATP) in trauma-induced and elective hypothermia].  Zentralbl Chir. 1999;  124 1017-1029
  • 9 Isselhard W, Minor T. [Gaseous oxygen for protection and conditioning of organs during ischemia].  Zentralbl Chir. 1999;  124 252-259
  • 10 Britt L D, Dascombe W H, Rodriguez A. New horizons in management of hypothermia and frostbite injury.  Surg Clin North Am. 1991;  71 345-370
  • 11 Gregory J S, Flancbaum L, Townsend M C et al. Incidence and timing of hypothermia in trauma patients undergoing operations.  J Trauma. 1991;  31 795-798 discussion 798–800
  • 12 Hildebrand F, Giannoudis P V, van Griensven M et al. Pathophysiologic changes and effects of hypothermia on outcome in elective surgery and trauma patients.  Am J Surg. 2004;  187 363-371
  • 13 Hohlrieder M, Kaufmann M, Moritz M et al. [Management of accidental hypothermia].  Anaesthesist. 2007;  56 805-811
  • 14 Russo S, Timmermann A, Radke O et al. [Accidental hypothermia in the household environment. Importance of preclinical temperature measurement].  Anaesthesist. 2005;  54 1209-1214
  • 15 Wittmers Jr L E. Pathophysiology of cold exposure.  Minn Med. 2001;  84 30-36
  • 16 Watts D D, Trask A, Soeken K et al. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity.  J Trauma. 1998;  44 846-854
  • 17 Wolberg A S, Meng Z H, Monroe 3rd D M et al. A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function.  J Trauma. 2004;  56 1221-1228
  • 18 Valeri C R, Feingold H, Cassidy G et al. Hypothermia-induced reversible platelet dysfunction.  Ann Surg. 1987;  205 175-181
  • 19 Villalobos T J, Adelson E, Barila T G. Hematologic changes in hypothermic dogs.  Proc Soc Exp Biol Med. 1955;  89 192-196
  • 20 Martini W Z. The effects of hypothermia on fibrinogen metabolism and coagulation function in swine.  Metabolism. 2007;  56 214-221
  • 21 Yenari M A, Palmer J T, Bracci P M et al. Thrombolysis with tissue plasminogen activator (tPA) is temperature dependent.  Thromb Res. 1995;  77 475-481
  • 22 Heinius G, Wladis A, Hahn R G et al. Induced hypothermia and rewarming after hemorrhagic shock.  J Surg Res. 2002;  108 7-13
  • 23 Tieu B H, Holcomb J B, Schreiber M A. Coagulopathy: its pathophysiology and treatment in the injured patient.  World J Surg. 2007;  31 1055-1064
  • 24 Winkler M, Akca O, Birkenberg B et al. Aggressive warming reduces blood loss during hip arthroplasty.  Anesth Analg. 2000;  91 978-984
  • 25 Hildebrand F, van Griensven M, Giannoudis P et al. Impact of hypothermia on the immunologic response after trauma and elective surgery.  Surg Technol Int. 2005;  14 41-50
  • 26 Shuja F, Tabbara M, Li Y et al. Profound hypothermia decreases cardiac apoptosis through Akt survival pathway.  J Am Coll Surg. 2009;  209 89-99
  • 27 Duz B, Kaplan M, Bilgic S et al. Does hypothermic treatment provide an advantage after spinal cord injury until surgery? An experimental study.  Neurochem Res. 2009;  34 407-410
  • 28 Schneider A, Popp E, Teschendorf P et al. [Therapeutic hypothermia].  Anaesthesist. 2008;  57 197-206 quiz 207–208
  • 29 Aibiki M, Maekawa S, Ogura S et al. Effect of moderate hypothermia on systemic and internal jugular plasma IL-6 levels after traumatic brain injury in humans.  J Neurotrauma. 1999;  16 225-232
  • 30 Shiozaki T, Hayakata T, Taneda M et al. A multicenter prospective ­randomized controlled trial of the efficacy of mild hypothermia for ­severely head injured patients with low intracranial pressure. Mild Hypothermia Study Group in Japan.  J Neurosurg. 2001;  94 50-54
  • 31 Morita Y, Oda S, Sadahiro T et al. The effects of body temperature control on cytokine production in a rat model of ventilator-induced lung injury.  Cytokine. 2009;  47 48-55
  • 32 Vitarbo E A, Chatzipanteli K, Kinoshita K et al. Tumor necrosis factor ­alpha expression and protein levels after fluid percussion injury in rats: the effect of injury severity and brain temperature.  Neurosurgery. 2004;  55 416-424 discussion 424–415
  • 33 Gundersen Y, Vaagenes P, Pharo A et al. Moderate hypothermia blunts the inflammatory response and reduces organ injury after acute haemorrhage.  Acta Anaesthesiol Scand. 2001;  45 994-1001
  • 34 Hildebrand F, van Griensven M, Giannoudis P et al. Effects of hypothermia and re-warming on the inflammatory response in a murine multiple hit model of trauma.  Cytokine. 2005;  31 382-393
  • 35 Eggum R, Ueland T, Mollnes T E et al. Effect of perfusion temperature on the inflammatory response during pediatric cardiac surgery.  Ann Thorac Surg. 2008;  85 611-617
  • 36 Menasche P, Peynet J, Haeffner-Cavaillon N et al. Influence of temperature on neutrophil trafficking during clinical cardiopulmonary bypass.  Circulation. 1995;  92 II334-II340
  • 37 Boldt J, Osmer C, Linke L C et al. Hypothermic versus normothermic cardiopulmonary bypass: influence on circulating adhesion molecules.  J Cardiothorac Vasc Anesth. 1996;  10 342-347
  • 38 Hsu S F, Niu K C, Lin C L et al. Brain cooling causes attenuation of cerebral oxidative stress, systemic inflammation, activated coagulation, and tissue ischemia / injury during heatstroke.  Shock. 2006;  26 210-220
  • 39 Chatzipanteli K, Yanagawa Y, Marcillo A E et al. Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats.  J Neurotrauma. 2000;  17 321-332
  • 40 Lee S L, Felix D B, Kyoto G. Hypothermia induces T-cell production of immunsuppressive cytokines.  J Surg Res. 2001;  100 150-153
  • 41 Wang H E, Callaway C W, Peitzman A B et al. Admission hypothermia and outcome after major trauma.  Crit Care Med. 2005;  33 1296-1301
  • 42 Vaagenes P, Gundersen Y, Opstad P K. Rapid rewarming after mild hypothermia accentuates the inflammatory response after acute volume controlled haemorrhage in spontaneously breathing rats.  Resuscitation. 2003;  58 103-112
  • 43 Steele M T, Nelson M J, Sessler D I et al. Forced air speeds rewarming in accidental hypothermia.  Ann Emerg Med. 1996;  27 479-484
  • 44 Kirkpatrick A W, Chun R, Brown R et al. Hypothermia and the trauma patient.  Can J Surg. 1999;  42 333-343
  • 45 Peng R Y, Bongard F S. Hypothermia in trauma patients.  J Am Coll Surg. 1999;  188 685-696
  • 46 Brauer A, Wrigge H, Kersten J et al. Severe accidental hypothermia: rewarming strategy using a veno-venous bypass system and a convective air warmer.  Intensive Care Med. 1999;  25 520-523
  • 47 Hanania N A, Zimmerman J L. Accidental hypothermia.  Crit Care Clin. 1999;  15 235-249
  • 48 Bassin S L, Bleck T P, Nathan B R. Intravascular temperature control system to maintain normothermia in organ donors.  Neurocrit Care. 2008;  8 31-35

Dr. P. Mommsen

Medizinische Hochschule Hannover · Unfallchirurgische Klinik

Carl-Neuberg-Straße 1

30625 Hannover

Deutschland

Phone: +49 / 5 11 / 5 32 81 32

Fax: +49 / 5 11 / 5 32 58 77

Email: mommsen.philipp@mh-hannover.de