Synlett 2011(6): 834-836  
DOI: 10.1055/s-0030-1259909
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Solvent-Free Reaction between Anthranilic Acids and Isocyanides: A Novel Approach for the Synthesis of 2-Unsubstituted 4(3H)-Quinazolinones

Mehdi Adib*a, Morteza Karimzadeha, Mohammad Mahdavia, Ehsan Sheikhia, Peiman Mirzaeib
a School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
Fax: +98(21)66495291; e-Mail: madib@khayam.ut.ac.ir;
b Department of Chemistry, Shahid Beheshti University, Tehran, Iran
Further Information

Publication History

Received 5 October 2010
Publication Date:
15 March 2011 (online)

Abstract

A novel synthesis of 2-unsubstituted 4(3H)-quinazolinones is described. Heating a mixture of an anthranilic acid and an isocyanide under solvent-free conditions afforded the title compounds in good to excellent yields.

    References and Notes

  • 1a Rewcastle GW. In Comprehensive Heterocyclic Chemistry III   Vol. 8:  Katritzky AR. Ramsden CA. Scriven EFV. Taylor RJK. Elsevier Science; Oxford: 2008.  Chapt. 2. p.117-252  
  • 1b Undheim K. Benneche T. In Comprehensive Heterocyclic Chemistry II   Vol. 6:  Katritzky AR. Rees CW. Scriven EVF. Pergamon Press; London: 1996.  Chapt. 2. p.93-231  
  • 2 Armarego WLF. Fused Pyrimidines, Part 1: Quinazolines   Interscience; New York: 1967. 
  • 3 Cao S.-L. Feng Y.-P. Jiang Y.-Y. Liu S.-Y. Ding G.-Y. Li R.-T. Bioorg. Med. Chem. Lett.  2005,  15:  1915 
  • 4 Kenichi O. Yoshihisa Y. Toyonari O. Toru I. Yoshio I. J. Med. Chem.  1985,  28:  568 
  • 5 Wolfe JF. Rathman TL. Sleevi MC. Campbell JA. Greenwood TD. J. Med. Chem.  1990,  33:  161 
  • 6 Tereshima K. Shimamura H. Kawase A. Tanaka Y. Tanimura T. Kamisaki T. Ishizuka Y. Sato M. Chem. Pharm. Bull.  1995,  43:  2021 
  • 7 Kurogi Y. Inoue Y. Tsutsumi K. Nakamura S. Nagao K. Yohsitsugu H. Tsuda Y. J. Med. Chem.  1996,  39:  1433 
  • 8 Kuneš J. Ba˛ant J. Pour M. Waisser K. Šlosárek M. Janota J. Farmaco  2000,  55:  725 
  • 9a Jang CS. Fu FY. Wang CY. Huang KC. Lu G. Thou TC. Science  1946,  103:  59 
  • 9b Koepfli JB. Mead JF. Brockman JA. J. Am. Chem. Soc.  1947,  69:  1837 
  • 10 Kobayashi S. Ueno M. Suzuki R. Ishitani H. Tetrahedron Lett.  1999,  40:  2175 
  • 11a Bridges AJ. Chem. Rev.  2001,  101:  2541 
  • 11b Rewcastle GW. Denny WA. Showalter HDH. Curr. Org. Chem.  2000,  4:  679 
  • 11c Bridges AJ. Curr. Med. Chem.  1999,  6:  825 
  • 12 Niementowski SV. J. Prakt. Chem.  1895,  51:  564 
  • 13a Ballard P. Bradbury RH. Harris CS. Hennequin LFA. Hickinson M. Johnson PD. Kettle JG. Klinowska T. Leach AG. Morgentin R. Pass M. Ogilvie DJ. Olivier A. Warin N. Williams EJ. Bioorg. Med. Chem. Lett.  2006,  16:  1633 
  • 13b Gomtsyan A. Bayburt EK. Schmidt RG. Zheng GZ. Perner RJ. Didomenico S. Koenig JR. Turner S. Jinkerson T. Drizin I. Hannick SM. Macri BS. McDonald HA. Honore P. Wismer CT. Marsh KC. Wetter J. Stewart KD. Oie T. Jarvis MF. Surowy CS. Faltynek CR. Lee CH. J. Med. Chem.  2005,  48:  744 
  • 13c Rocco SA. Barbarini JE. Rittner R. Synthesis  2004,  429 
  • 14a Alexandre FR. Berecibar A. Wrigglesworth R. Besson T. Tetrahedron Lett.  2003,  44:  4455 
  • 14b Alexandre FR. Berecibar A. Besson T. Tetrahedron Lett.  2002,  43:  3911 
  • 15 Majo VJ. Perumal PT. Tetrahedron Lett.  1996,  37:  5015 
  • 16 Kamal A. Reddy KS. Prasad BR. Babu AH. Ramana AV. Tetrahedron Lett.  2004,  45:  6517 
  • 17 Narasimhulu M. Mahesh KC. Reddy TS. Rajesh K. Venkateswarlu Y. Tetrahedron Lett.  2006,  47:  4381 
  • 18 Khosropour AR. Mohammadpoor-Baltork I. Ghorbankhani H. Tetrahedron Lett.  2006,  47:  3561 
  • 19 Chari MA. Shobha D. Mukkanti K. Catal. Commun.  2006,  7:  787 
  • 20a Shaabani A. Soleimani E. Rezayan AH. Tetrahedron Lett.  2007,  48:  6137 
  • 20b Stockdill JL. Wu X. Danishefsky SJ. Tetrahedron Lett.  2009,  50:  5152 
  • 21 Shaabani A. Rezayan AH. Sarvary A. Keshipour S. Khavasi HR. Tetrahedron Lett.  2010,  51:  4091 
  • 22 Wu X. Li X. Danishefsky SJ. Tetrahedron Lett.  2009,  50:  1523 
  • 23 Basso A. Banfi L. Galatini A. Guanti G. Rastrelli F. Riva R. Org. Lett.  2009,  11:  4068 
  • 24a Li X. Yuan Y. Berkowitz WF. Todaro LJ. Danishefsky SJ. J. Am. Chem. Soc.  2008,  130:  13222 
  • 24b Hou JL. Ajami D. Rebek J. J. Am. Chem. Soc.  2008,  130:  7810 
  • 24c Restorp P. Rebek J. J. Am. Chem. Soc.  2008,  130:  11850 
  • 25 Marmet D. Boullanger P. Descotes G. Tetrahedron Lett.  1980,  21:  1459 
  • 26a Adib M. Ansari S. Feizi S. Bijanzadeh HR. Synlett  2010,  921 
  • 26b Adib M. Ansari S. Fatemi S. Bijanzadeh HR. Zhu LG. Tetrahedron  2010,  66:  2723 
  • 26c Adib M. Ansari S. Feizi S. Asgarian Damavandi J. Mirzaei P. Synlett  2009,  3263 
  • 26d Adib M. Mahdavi M. Ansari S. Malihi F. Zhu LG. Bijanzadeh HR. Tetrahedron Lett.  2009,  50:  7246 
  • 26e Adib M. Sheibani E. Bijanzadeh HR. Zhu LG. Tetrahedron  2008,  64:  10681 
  • 26f Adib M. Sayahi MH. Ziyadi H. Zhu LG. Bijanzadeh HR. Synthesis  2008,  3289 
  • 26g Adib M. Mohammadi B. Bijanzadeh HR. Synlett  2008,  3180 
  • 26h Adib M. Mohammadi B. Bijanzadeh HR. Synlett  2008,  177 
  • 26i Adib M. Sayahi MH. Ziyadi H. Bijanzadeh HR. Zhu LG. Tetrahedron  2007,  63:  11135 
  • 27 Adib M. Ansari S. Mohammadi A. Bijanzadeh HR. Tetrahedron Lett.  2010,  51:  30 
  • 29a Dömling A. Chem. Rev.  2006,  106:  17 
  • 29b Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3169 
  • 29c Ugi I. Isonitrile Chemistry   Academic Press; London: 1971. 
  • 29d Walborsky HM. Periasamy MP. In The Chemistry of Functional Groups   Suppl. C:  Patai S. Rappaport Z. Wiley; New York: 1983.  Chapt. 20. p.835-837  
28

General Procedure for the Preparation of Compounds 3a-l
A mixture of the appropriate anthranilic acid (2 mmol) and isocyanide (2.2 mmol) was stirred at 150 ˚C for 2 h. Progress of the reaction was indicated by TLC monitoring. Next, the reaction mixture was cooled to r.t. and acetone (2 mL) was added, and stirring was continued for 10 min at ambient temperature. The precipitate was filtered and washed with cold acetone (2 mL), and the product was recrystallized from n-hexane-EtOAc (1:1). Compounds 3a-i were purified by this procedure, and compounds 3j-l were purified by column chromatography using n-hexane-EtOAc (3:1) as eluent.
3-Cyclohexyl-4(3 H )-quinazolinone (3a)
Yield 0.41g (90%); colorless crystals; mp 126-127 ˚C. IR (KBr): 1659 (C=O), 1596, 1564, 1468, 1399, 1334, 1240, 1172, 1132, 1024, 956, 894, 805, 766, 695 cm. ¹H NMR (300.1 MHz, CDCl3): δ = 1.20-2.04 [m, 10 H, CH(CH 2)5], 4.77-4.86 [m, 1 H, CH(CH2)5], 7.49 (dd, J = 7.2, 7.4 Hz, 1 H, CH), 7.68 (d, J = 7.6 Hz, 1 H, CH), 7.74 (dd, J = 7.0, 7.9 Hz, 1 H, CH), 8.12 (s, 1 H, CH), 8.31 (d, J = 8.0 Hz, 1 H, CH). ¹³C NMR (75.5 MHz, CDCl3): δ = 25.27, 25.89 and 32.60 (3 × CH2), 53.54 (NCH), 121.93 (C), 126.95, 127.10, 127.24, 134.10 and 143.91 (5 × CH), 147.50 (C), 160.70 (C=O). MS (EI): m/z (%) = 228 (24) [M+], 192 (7), 181 (5), 171 (4), 160 (7), 147 (100), 129 (8), 118 (10), 102 (5), 90 (7), 77 (9), 67 (14), 55 (16), 41 (22). Anal. Calcd for C14H16N2O (228.29): C, 73.66; H, 7.06; N, 12.27. Found: C, 73.6; H, 7.2; N, 12.1.
6-Chloro-3-cyclohexyl-4(3 H )-quinazolinone (3j)
Yield 0.43 g (82%); colorless crystals; mp 137-138 ˚C.
IR (KBr): 1668 (C=O), 1597, 1552, 1465, 1388, 1358, 1320, 1240, 1137, 1072, 1022, 947, 895, 822, 775 cm. ¹H NMR (300.1 MHz, CDCl3): δ = 1.25-1.97 [m, 10 H, CH(CH 2)5], 4.76-4.84 [m, 1 H, CH(CH2)5], 7.60 (d, J = 8.8 Hz, 1 H, CH), 7.63 (dd, J = 2.1, 8.8 Hz, 1 H, CH), 8.11 (d, J = 2.1 Hz, 1 H, CH), 8.26 (s, 1 H, CH). ¹³C NMR (75.5 MHz, CDCl3): δ = 25.22, 25.28, and 32.56 (3 × CH2), 53.59 (NCH), 122.97 (C), 126.30 and 128.95 (2 × CH), 132.88 (C), 134.52 and 144.08 (2 × CH), 146.02 (C), 159.68 (C=O). MS (EI): m/z (%) = 264 (8) [M+ ³7Cl], 262 (22) [M+ ³5Cl], 228 (5), 205 (3), 181 (100), 163 (4), 147 (18), 136 (7), 124 (5), 110 (5), 97 (4), 82 (9), 67 (20), 55 (18), 41 (23). Anal. Calcd for C14H15ClN2O (262.74): C, 64.00; H, 5.75; N, 10.66. Found: C, 63.9; H, 5.7; N, 10.6.
6-Chloro-3-(1,1,3,3-tetramethylbutyl)-4(3 H )-quinazolinone (3l)
Yield 0.44 g (76%); colorless crystals; mp 118-119 ˚C.
IR (KBr): 1662 (C=O), 1592, 1560, 1467, 1362, 1324, 1285, 1219, 1128, 1075, 918, 835, 805, 754, 712 cm. ¹H NMR (500.1 MHz, CDCl3): δ = 0.81 [s, 9 H, C(CH3)3], 1.75 [s, 6 H, C(CH3)2], 2.22 (s, 2 H, CH2), 7.56 (d, J = 8.9 Hz, 1 H, CH), 7.60 (dd, J = 2.2, 8.9 Hz, 1 H, CH), 8.20 (d, J = 2.2 Hz, 1 H, CH), 8.26 (s, 1 H, CH). ¹³C NMR (125.8 MHz, CDCl3): δ = 30.00 [C(CH3)2], 31.24 [C(CH3)3], 31.93 [C(CH3)3], 48.88 (CH2), 64.76 [C(CH3)2], 124.13 (C), 126.23 and 128.55 (2 × CH), 132.66 (C), 134.34 and 144.84 (2 × CH), 145.85 (C), 161.41 (C=O). MS (EI): m/z (%) = 294 (1) [M+ ³7Cl], 292 (3) [M+ ³5Cl], 235 (8), 180 (100), 163 (9), 153 (8), 138 (7), 124 (6), 112 (26), 97 (68), 69 (10), 57 (54), 41 (31). Anal. Calcd for C16H21ClN2O (292.81): C, 65.63; H, 7.23; N, 9.57. Found: C, 65.7; H, 7.4; N, 9.4.