Synlett 2011(4): 481-484  
DOI: 10.1055/s-0030-1259524
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Organocatalytic Enantioselective Direct Aldol Reaction in Aqueous Media Catalyzed by a Bifunctional Diamine Catalyst

Vishnumaya Bisaia, Vinod K. Singh*a,b
a Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
b Department of Chemistry, Indian Institute of Science Education and Research Bhopal, ITI (Gas Rahat) Building, Govindpura, Bhopal, Madhya Pradesh 462023, India
Fax: +91(512)2597436; e-Mail: vinodks@iitk.ac.in;
Further Information

Publication History

Received 26 October 2010
Publication Date:
02 February 2011 (online)

Abstract

Organocatalytic direct asymmetric anti-aldol reaction was developed in aqueous medium using a BINOL-derived diamine/protic acid bifunctional catalyst. The catalytic protocol could offer the opportunity to access anti-aldol products with high level of enantioselectivities with moderate diastereoselectivities.

    References and Notes

  • 1a Modern Aldol Reactions   Vol. 1:  Mahrwald R. Wiley-VCH; Weinheim: 2004. 
  • 1b For metal-catalyzed reactions, see: Modern Aldol Reactions   Vol. 2:  Mahrwald R. Wiley-VCH; Weinheim: 2004. 
  • 1c For a review, see: Casiraghi G. Zanardi F. Appendino G. Rassu G. Chem. Rev.  2000,  100:  1929 
  • 2 List B. Lerner RA. Barbas CF. J. Am. Chem. Soc.  2000,  122:  2395 
  • 3a Machajewski TD. Wong C.-H. Angew. Chem. Int. Ed.  2000,  39:  1352 
  • 3b Gijsen HJM. Qiao L. Fitz W. Wong C.-H. Chem. Rev.  1996,  96:  443 
  • 3c Wagner J. Lerner RA. Barbas CF. Science  1995,  270:  1797 
  • 3d Dean SM. Greenberg WA. Wong C.-H. Adv. Synth. Catal.  2007,  349:  1308 
  • 3e Li C. Feng X.-W. Wang N. Zhou Y.-J. Yu X.-Q. Green Chem.  2008,  10:  616 
  • 4a Li H. Da C S. Xiao Y.-H. Li X. Su Y.-N. J. Org. Chem.  2008,  73:  7398 
  • 4b Kantam ML. Ramani T. Chakrapani L. Kumar KV. Tetrahedron Lett.  2008,  49:  1498 
  • 4c Paradowska J. Stodulski M. Mlynarski J. Adv. Synth. Catal.  2007,  349:  1041 
  • 4d Evans DA. Downey CW. Hubbs JL. J. Am. Chem. Soc.  2003,  125:  8706 
  • 4e Trost BM. Silcoff ER. Ito H. Org. Lett.  2001,  3:  2497 
  • 4f Kumagai N. Matsunaga S. Yoshikawa N. Ohshima T. Shibasaki M. Org. Lett.  2001,  3:  1539 
  • For reviews on asymmetric organocatalytic aldol reactions, see:
  • 5a Guillena G. Najera C. Ramon DJ. Tetrahedron: Asymmetry  2007,  18:  2249 
  • 5b Tanaka F. Barbas CF. In Enantioselective Organocatalysis   Dalko PI. Wiley-VCH; Weinheim: 2007.  p.19 
  • 5c Pellissier H. Tetrahedron  2007,  63:  9267 
  • 5d Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev.  2007,  107:  5471 
  • 6a Duarte FJS. Cabrita EJ. Frenking G. Santos AG. J. Org. Chem.  2010,  75:  2546 ; and references cited therein
  • 6b Luo S. Qiao Y. Zhang L. Li J. Li X. Cheng J.-P. J. Org. Chem.  2009,  74:  9521 
  • 6c Xiong Y. Wang F. Dong S. Liu X. Feng X. Synlett  2008,  73 
  • 6d Luo S. Xu H. Zhang L. Li J. Cheng J.-P. Org. Lett.  2008,  10:  653 
  • 6e Hayashi Y. Itoh T. Aratake S. Ishikawa H. Angew. Chem. Int. Ed.  2008,  47:  2082 
  • 6f Xu X.-Y. Wang Y.-Z. Gong L.-Z. Org. Lett.  2007,  9:  4247 
  • For reviews, see:
  • 6g Raj M. Singh VK. Chem. Commun.  2009,  6687 
  • 6h List B. Acc. Chem. Res.  2004,  37:  548 
  • 6i Notz W. Tanaka F. Barbas CF. Acc. Chem. Res.  2004,  37:  580 
  • 6j Miller SJ. Acc. Chem. Res.  2004,  37:  601 
  • 6k Saito S. Yamamoto H. Acc. Chem. Res.  2004,  37:  570 
  • 7a Dondoni A. Massi A. Angew. Chem. Int. Ed.  2008,  47:  4638 
  • For recent reports on organocatalytic aldol reactions, see:
  • 7b Luo S. Xu H. Li J. Zhang L. Cheng J.-P.
    J. Am. Chem. Soc.  2007,  129:  3074 
  • 7c Ramasastry SSV. Zhang H. Tanaka F. Barbas CF. J. Am. Chem. Soc.  2007,  129:  288 
  • 7d Wang F. Xiong Y. Liu X. Feng X. Adv. Synth. Catal.  2007,  349:  2665 
  • 7e Rodriguez B. Rantanen T. Bolm C. Angew. Chem. Int. Ed.  2006,  45:  6924 
  • 7f D’Elia V. Zwicknagl H. Reiser O. Org. Lett.  2008,  73:  3262 
  • 7g Kano T. Takai J. Tokuda O. Maruoka K. Angew. Chem. Int. Ed.  2005,  44:  3055 
  • 8a Breslow R. Rizzo CJ. J. Am. Chem. Soc.  1991,  113:  4340 
  • 8b Herrmann WA. Kohlpaintner CW. Angew. Chem., Int. Ed. Engl.  1997,  36:  1049 
  • For reviews, see:
  • 8c Lindstrom UM. Chem. Rev.  2002,  102:  2751 
  • 8d Kobayashi S. Manabe K. Acc. Chem. Res.  2002,  35:  209 
  • 9a Sakthivel K. Notz W. Bui T. Barbas CF. J. Am. Chem. Soc.  2001,  123:  5260 
  • 9b Torii H. Nakadai M. Ishihara K. Saito S. Yamamoto H. Angew. Chem. Int. Ed.  2004,  43:  1983 
  • 9c Nyberg AI. Usanp A. Pihko PM. Synlett  2004,  1891 
  • 9d Cordova A. Notz W. Barbas CF. Chem. Commun.  2002,  3024 
  • 9e Darbre T. Machuqueiro M. Chem. Commun.  2003,  1090 
  • 9f Tang Z. Yamg Z.-H. Cun L.-F. Gong L.-Z. Mi A.-Q. Jiang Y.-Z. Org. Lett.  2004,  6:  2285 
  • 9g Chimni SS. Mahajan D. Suresh Babu VV. Tetrahedron Lett.  2005,  46:  5617 
  • 10a Heine A. Desantis G. Luz JG. Mitchell M. Wong C.-H. Wilson IA. Science  2001,  294:  369 
  • 10b Zhu X. Tanaka F. Hu Y. Heine A. Fuller R. Zhing G. Olson AJ. Lerner RA. Barbas CF. Wilson IA. J. Mol. Biol.  2004,  343:  1269 
  • 11 Mase N. Nakai Y. Ohara N. Yoda H. Takabe K. Tanaka F. Barbas CF. J. Am. Chem. Soc.  2006,  128:  734 
  • 12 Maya V. Singh VK. Org. Lett.  2009,  9:  1117 
  • 13 For asymmetric aldol reaction using BINOL-derived primary amine, see: Liu Q.-Z. Wang X.-L. Luo S.-W. Zheng B.-L. Qin D.-B. Tetrahedron Lett.  2008,  49:  7434 
  • 14a Raj M. Maya V. Ginotra SK. Singh VK. Org. Lett.  2006,  8:  4097 
  • 14b Maya V. Raj M. Singh VK. Org. Lett.  2007,  9:  2593 
  • 14c Gandhi S. Singh VK. J. Org. Chem.  2008,  73:  9411 
  • 14d Raj M. Maya V. Singh VK. J. Org. Chem.  2009,  74:  4289 
  • 15a Song L. Chen X. Zhang S. Zhang H. Li P. Luo G. Liu W. Duan W. Wang W. Org. Lett.  2008,  10:  5489 
  • 15b Zhang H. Zhang S. Liu L. Luo G. Duan W. Wang W. J. Org. Chem.  2010,  75:  368 
  • For a diamine derived from trans-1,2-diaminocyclohexane and its application to direct asymmetric aldol reaction from our group, see:
  • 16a Raj M. Parashari GS. Singh VK. Adv. Synth. Catal.  2009,  351:  1284 
  • 16b Raj M. Veerasamy N. Singh VK. Tetrahedron Lett.  2010,  51:  2157 
  • 18a Kumar A. Pawar SS. Tetrahedron  2003,  59:  5019 
  • 18b Kleiner CM. Schreiner PR. Chem. Commun.  2006,  4315 
  • 19a Nakadai M. Saito S. Yamamoto H. Tetrahedron  2002,  58:  8167 
  • 19b Ishii T. Fiujioka S. Sekiguchi Y. Kotsuki H. J. Am. Chem. Soc.  2004,  126:  9558 
  • 19c Seebach D. Golinski J. Helv. Chim. Acta  1981,  64:  1413 
17

General Procedure for the Direct Aldol Reaction with the Catalyst 3 in Brine: An aldehyde (0.5 mmol) was added to a mixture of ketone (2 mmol) and an organocatalyst 3 (10 mol%) with DNBSA (10 mol%) in brine (0.5 mL) at r.t. The reaction mixture was stirred and the progress of the reaction was monitored by TLC. After reaction was over (as indicated by TLC), the reaction mixture was diluted with EtOAc (2 mL). The organic layer was separated and dried over anhyd Na2SO4. It was purified over silica gel by column chromatography. The enantiomeric excess(ee) of the aldol product was determined by chiral HPLC analysis. The relative and absolute configurations of the products were determined by comparison with the known ¹H NMR, chiral HPLC analysis, and optical rotation values.

20

Compound characterization data for selected compounds:
(2S,1′ R )-2-[Furan-2-yl(hydroxy)methyl]cyclohexan-1-one (4f): It was obtained in a maximum of 80% yield and 96% ee. The optical purity was determined by HPLC on chiralpak AD-H column (hexane-2-propanol, 90:10); flow rate 0.5 mL/min, 220 nm; t R ( major) = 26.8 min, t R ( minor) = 31.2 min; [α]²5 D +21 (c = 1.0, CHCl3). ¹H NMR (500 MHz, CDCl3): δ = 1.23-1.35 (m, 1 H), 1.61-1.71 (m, 3 H), 1.83-1.85 (m, 1 H), 2.10-2.37 (m, 1 H), 2.38-2.49 (m, 2 H), 2.89-2.95 (m, 1 H), 3.89 (br s, 1 H), 4.83 (d, J = 8.6 Hz, 1 H), 6.27-6.34 (m, 2 H), 7.36-7.38 (m, 1 H). Anal. Calcd for C11H14O3: C, 68.02; H, 7.27. Found: C, 68.09; H, 7.25.
(2S,1′ R )-2-[Hydroxy(naphthalene-2-yl)methyl]-cyclohexan-1-one (4g): It was obtained in a maximum of 88% yield and 96% ee. The optical purity was determined by HPLC on chiralpak AS-H column (hexane-2-propanol, 90:10); flow rate 0.5 mL/min; t R ( major) = 26.6 min, t R ( minor) = 30.8 min; [α]²5 D +5.8 (c = 1.3, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 1.25-1.35 (m, 2 H), 1.48-1.76 (m, 3 H), 2.04-2.09 (m, 1 H), 2.36-2.51 (m, 2 H), 2.69-2.75 (m, 1 H), 4.08 (br s, 1 H), 4.96 (d, J = 8.8 Hz, 1 H), 7.45-7.49 (m, 2 H), 7.71-7.89 (m, 5 H). Anal. Calcd for C17H18O2: C, 80.28; H, 7.13. Found: C, 80.18; H, 7.11.
(2S,1′ R ) 3-[Hydroxy(phenyl)methyl]tetrahydrothio-pyran-4-one (5b): It was obtained in a maximum of 77% yield and 98% ee. The optical purity was determined by HPLC on chiralpak OD-H column (hexane-2-propanol, 98:2); flow rate 0.5 mL/min, t R ( major) = 60.6 min, t R ( minor) = 87.1 min; [α]²5 D +17.1 (c = 1.4, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 2.48-2.60 (m, 2 H), 2.75-2.81 (m, 1 H), 2.83-2.88 (m, 1 H), 2.92-3.04 (m, 3 H), 3.42 (br s, 1 H), 4.97
(d, J = 8.8 Hz, 1 H), 7.26-7.39 (m, 5 H). Anal. Calcd for C12H14O2S: C, 64.83; H, 6.35. Found: C, 64.89; H, 6.33.