Synlett 2009(18): 2971-2976  
DOI: 10.1055/s-0029-1218280
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Temperature-Controlled Selectivity toward [1,3]- or [3,3]-Sigmatropic Rearrangement: Regioselective Synthesis of Substituted 3,4-Dihydrocoumarins

Yunkui Liu*, Jianqiang Qian, Shaojie Lou, Zhenyuan Xu*
State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
e-Mail: ykuiliu@zjut.edu; e-Mail: greensyn@zjut.edu.cn;
Further Information

Publication History

Received 21 July 2009
Publication Date:
08 October 2009 (online)

Abstract

Either [1,3]- or [3,3]-sigmatropic rearrangements were selectively accessed by controlling the reaction temperature in the gold(III)-catalyzed tandem rearrangement/cyclization of (E)-2-(aryloxymethyl)alk-2-enoates to afford diversely substituted 3,4-dihydrocoumarin derivatives in moderate to good yields and in excellent regioselectivity.

    References and Notes

  • 1a Hashmi ASK. Hutching GJ. Angew. Chem. Int. Ed.  2006,  45:  7896 
  • 1b Hashmi ASK. Chem. Rev.  2007,  107:  3180 
  • 1c Jiménez-Núñez E. Echavarren AM. Chem. Commun.  2007,  333 
  • 1d Li Z. Brouwer C. He C. Chem. Rev.  2008,  108:  3239 
  • 1e Arcadi A. Chem. Rev.  2008,  108:  3266 
  • 1f Hashmi ASK. Rodolph M. Chem. Soc. Rev.  2008,  37:  1766 
  • 1g Jiménez-Núñez E. Echavarren AM. Chem. Rev.  2008,  108:  3326 
  • 1h Skouta R. Li C.-J. Tetrahedron  2008,  64:  4917 
  • 1i Muzart J. Tetrahedron  2008,  64:  5815 
  • For two reviews on gold-catalyzed [3,3]- and [2,3]-sigmatropic rearrangements of propargylic esters, see:
  • 2a Marion N. Nolan SP. Angew. Chem. Int. Ed.  2007,  46:  2750 
  • 2b Marco-Contelles J. Soriano E. Chem. Eur. J.  2007,  13:  1350 
  • For selected examples related to [3,3]-sigmatropic rearrangement catalyzed by gold, see:
  • 3a Peng Y. Cui L. Zhang G. Zhang L. J. Am. Chem. Soc.  2009,  131:  5062 
  • 3b Bae HJ. Baskar B. An SE. Cheong JY. Thangadurai DT. Hwang I.-C. Rhee YH. Angew. Chem. Int. Ed.  2008,  47:  2263 
  • 3c Yu M. Zhang G. Zhang L. Org. Lett.  2007,  9:  2147 
  • 3d Buzas AK. Istrate FM. Gagosz F. Org. Lett.  2007,  9:  985 
  • 3e Marion N. Gealageas R. Nolan SP. Org. Lett.  2007,  9:  2653 
  • 3f Luo T. Schreiber SL. Angew. Chem. Int. Ed.  2007,  46:  8250 
  • 3g Wang S. Zhang L. J. Am. Chem. Soc.  2006,  128:  8414 
  • 3h Zhang L. Wang S. J. Am. Chem. Soc.  2006,  128:  1442 
  • 3i Wang S. Zhang L. J. Am. Chem. Soc.  2006,  128:  14274 
  • 3j Reich NW. Yang C.-G. Shi Z. He C. Synlett  2006,  1278 
  • 3k Zhao J. Hughes CO. Toste FD. J. Am. Chem. Soc.  2006,  128:  7436 
  • 3l Marion N. Díez-González S. de Frémont P. Noble AR. Nolan SP. Angew. Chem. Int. Ed.  2006,  45:  3647 
  • 3m Suhre MH. Reif M. Kirsch SF. Org. Lett.  2005,  7:  3925 
  • For selected examples of [2,3]-sigmatropic rearrangement catalyzed by gold, see:
  • 4a Uemura M. Watson IDG. Katsukawa M. Toste FD. J. Am. Chem. Soc.  2009,  131:  3464 
  • 4b Súarez-Pantiga S. Rubio E. Alvarez-Rúa C. González JM. Org. Lett.  2009,  11:  13 
  • 4c Li G. Zhang G. Zhang L. J. Am. Chem. Soc.  2008,  130:  3740 
  • 4d Pérez AG. López CS. Marco-Contelles J. Faza ON. Soriano E. de Lera AR. J. Org. Chem.  2009,  74:  2982 
  • 4e Moreau X. Goddard J.-P. Bernard M. Lemière G. López-Romero JM. Mainetti E. Marion N. Mouriès V. Thorimbert S. Fensterbank L. Malacria M. Adv. Synth. Catal.  2008,  350:  43 
  • 4f Davies PW. Albrecht SJ.-C. Chem. Commun.  2008,  238 
  • 4g Gorin DJ. Watson IDG. Toste FD. J. Am. Chem. Soc.  2008,  130:  3736 
  • 4h Shapiro ND. Toste FD. J. Am. Chem. Soc.  2008,  130:  9244 
  • 4i Witham CA. Mauleón P. Shapiro ND. Sherry BD. Toste FD. J. Am. Chem. Soc.  2007,  129:  5838 
  • 4j Amijs CHM. López-Carillo V. Echavarren AM. Org. Lett.  2007,  9:  4021 
  • For examples of [1,2]-sigmatropic rearrangement catalyzed by gold, see:
  • 5a Peng L. Zhang X. Zhang S. Wang J.
    J. Org. Chem.  2007,  72:  1192 
  • 5b Sanz R. Miguel D. Rodríguez F. Angew. Chem. Int. Ed.  2008,  47:  7354 
  • 5c Mamane V. Hannen P. Fürstner A. Chem. Eur. J.  2004,  10:  4556 
  • 6 Claisen L. Ber. Dtsch. Chem. Ges.  1912,  45:  3157 
  • 7a Rhoads SJ. Raulins NR. Organic Reactions   Vol. 22:  Wiley; New York: 1974.  p.1 
  • 7b Wipf P. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Paquette LA. Pergamon Press; Oxford: 1991.  p.827-873  
  • 7c Luts RP. Chem. Rev.  1984,  84:  205 
  • 7d Ziegler FE. Chem. Rev.  1988,  88:  1423 
  • 7e Castro AMM. Chem. Rev.  2004,  104:  2939 
  • 7f Ito H. Taguchi T. Chem. Soc. Rev.  1999,  28:  43 
  • 7g Hiersemann M. Abraham L. Eur. J. Org. Chem.  2002,  1461 
  • 7h Nubbemeyer U. Synthesis  2003,  961 
  • 8a Wipf P. Rodríguez S. Adv. Synth. Catal.  2002,  344:  434 
  • 8b Hiersemann M. Abraham L. Org. Lett.  2001,  3:  49 
  • 8c Saito S. Shimada K. Yamamoto H. Synlett  1996,  720 
  • 8d Nonoshita K. Banno H. Maruoka K. Yamamoto H. J. Am. Chem. Soc.  1990,  112:  316 
  • 8e Schmid K. Schmid H. Helv. Chim. Acta  1953,  36:  687 
  • 8f Fahrni P. Schmid H. Helv. Chim. Acta  1959,  42:  1102 
  • 8g Mooney BA. Prager RH. Ward AD. Aust. J. Chem.  1980,  33:  2717 
  • 9a Grieco PA. Clark JD. Jagoe CT. J. Am. Chem. Soc.  1991,  113:  5488 
  • 9b Grieco PA. Collins JL. Henry KJ. Tetrahedron Lett.  1992,  33:  4735 
  • 9c Palani N. Balasubramanian KK. Tetrahedron Lett.  1993,  34:  5001 
  • 9d Palani N. Balasubramanian KK. Tetrahedron Lett.  1995,  36:  9527 
  • 9e Nakamura S. Ishihara K. Yamamoto H. J. Am. Chem. Soc.  2000,  122:  8131 
  • 9f Schobert R. Siegfried S. Gordon G. Mulholland D. Nieuwenhuyzen M. Tetrahedron Lett.  2001,  42:  4561 
  • 10a Basavaiah D. Rao PD. Hyma RS. Tetrahedron  1996,  52:  8001 
  • 10b Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 11a Liu Y. Li J. Zheng H. Xu D. Xu Z. Zhang Y. Synlett  2005,  2999 
  • 11b Liu Y. Xu X. Zheng H. Xu D. Xu Z. Zhang Y. Synlett  2006,  571 
  • 11c Liu YK. Zheng H. Xu D. Xu Z. Zhang Y. Synlett  2006,  2492 
  • 11d Liu Y. Xu D. Xu Z. Zhang Y. Synlett  2007,  1671 
  • 11e Liu Y. Mao D. Qian J. Lou S. Xu Z. Zhang Y. Synthesis  2009,  1170 
  • 12 Basavaiah D. Bakthadoss M. Pandiaraju S. Chem. Commun.  1998,  1639 
  • 13 For an excellent review on ligand effects in homogeneous gold catalysis, see: Grorin DJ. Sherry BD. Toste FD. Chem. Rev.  2008,  108:  3351 
  • For silver salt additives in gold catalysis, see, for example:
  • 14a Nieto-Oberhuber C. Muñoz MP. Buñuel E. Nevado C. Cárdenas DJ. Echavarren AM. Angew. Chem. Int. Ed.  2004,  43:  2402 
  • 14b Watanabe T. Oishi S. Fujii N. Ohno H. Org. Lett.  2007,  9:  4821 
  • 14c Lemière GG. Gandon V. Agenet N. Goddard J.-P. de Kozak A. Aubert C. Fensterbank L. Malacria M. Angew. Chem. Int. Ed.  2006,  45:  7596 
  • 14d Shi Z. He C. J. Am. Chem. Soc.  2004,  126:  5964 
  • 17a Donnelly DMX. Boland GM. Nat. Prod. Rep.  1995,  12:  321 
  • 17b Donnelly DMX. Boland GM. The Flavonoids: Advances in Research since 1986   Harborne JB. Chapman and Hall; London: 1993.  Chap. 6.
  • 17c Posakony J. Hirao M. Steven S. Simon JA. Bedalov A. J. Med. Chem.  2004,  47:  2635 
  • 18a Zeitler K. Rose CA. J. Org. Chem.  2009,  74:  1759 
  • 18b Häser K. Wenk HH. Schwab W. J. Agric. Food Chem.  2006,  54:  6236 
  • 19a Foucaud A. Brine N. Synth. Commun.  1994,  24:  2851 
  • 19b Krawczyk H. Albrecht L. Wojciechowski J. Wolf WM. Tetrahedron  2007,  63:  12583 
  • 19c Vida JA. Gut M. J. Org. Chem.  1968,  33:  1202 
  • 19d Pickett JE. van Dort PC. Tetrahedron Lett.  1992,  33:  1161 
  • 19e Murakami M. Tsuruta T. Ito Y. Angew. Chem. Int. Ed.  2000,  39:  2484 
  • 19f Henry CE. Kwon O. Org. Lett.  2007,  9:  3069 
  • 19g Zhang Z. Ma Y. Zhao Y. Synlett  2008,  1091 
15

Typical Experimental Procedure for the Synthesis of 2 under Condition A: AuCl3 (9.1 mg, 0.03 mmol), AgOTf (23.1 mg, 0.09 mmol), and DCE (2 mL) were added to a 10-mL flask. The mixture was stirred at r.t. for 5 min before a DCE solution of 1a (0.35 g, 1.0 mmol diluted in 1 mL of solvent) was added. Then the reaction mixture was stirred at 80 ˚C for 4 h. Upon completion of the reaction, the resulting mixture was diluted with CH2Cl2 (10 mL) and filtered through Celite. After evaporation of the solvent under vacuum, the residue was purified by column chromatog-raphy on silica gel (200-300 mesh) using cyclohexane-EtOAc (12:1) as eluent to give pure 2a.
Typical Experimental Procedure for the Synthesis of 3 under Condition B: AuCl3 (9.1 mg, 0.03 mmol), AgOTf (23.1 mg, 0.09 mmol), and DCE or DCB (2 mL) were added to a 10-mL sealed vessel. The mixture was stirred at r.t. for 5 min before a DCE or DCB solution of 1a (0.35 g, 1.0 mmol diluted in 1 mL of solvent) was added. Then the reaction mixture was stirred at 120 ˚C for 2 h. Upon completion of the reaction, the resulting mixture was diluted with CH2Cl2 (10 mL) and filtered through Celite. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (200-300 mesh) using cyclohexane-EtOAc (12:1) as eluent to give pure 3a.

16

Representative Data for Compound 2 and 3:
Compound 2b: white solid; R f 0.46 (cyclohexane-EtOAc, 12:1); mp 198.3-201.0 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 4.32 (d, 2 H, J = 2.5 Hz, CH2), 7.25 (d, 1 H, J = 8.5 Hz, ArH), 7.43-7.85 (m, 9 H, ArH), 8.03 (t, 1 H, J = 2.5 Hz, ArCH=). ¹³C NMR (125 MHz, CDCl3): δ = 26.12, 112.14, 117.50, 122.28, 122.91, 124.27, 125.25, 127.33, 128.87, 129.25, 130.76, 130.91, 131.74, 132.17, 133.55, 142.13, 147.77, 163.60. IR (KBr): 1711 (C=O), 1630 (C=C) cm. GC-MS: m/z = 364 [M+], 366 [M+ + 2]. HRMS (EI): m/z calcd for C20H13O2Br: 364.0099; found: 364.0113.
Compound 3c: white solid; R f 0.56 (cyclohexane-EtOAc, 12:1); mp 114.5-114.6 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 2.28 (s, 3 H, Me), 4.90 (s, 1 H), 5.72 (s, 1 H), 6.44 (s, 1 H), 6.89-7.33 (m, 8 H, ArH). ¹³C NMR (125 MHz, CDCl3): δ = 20.80, 48.26, 117.04, 124.28, 127.52, 127.76, 128.96, 129.08, 129.26, 129.43, 134.53, 136.88, 140.77, 148.59, 163.26. IR (KBr): 1746 (C=O), 1627 (C=C) cm. GC-MS: m/z = 250 [M+]. HRMS (EI): m/z calcd for C17H14O2: 250.0994; found: 250.1001.