Synlett 2009(18): 2949-2952  
DOI: 10.1055/s-0029-1218003
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Concise Asymmetric Total Synthesis of ent-Guadinomic Acid from an Epoxy Alkenol

Hyemi Kim, Myung-Yeol Kim, Jinsung Tae*
Department of Chemistry and Center for Bioactive Molecular Hybrids (CBMH), Yonsei University, Seoul 120-749, Korea
Fax: +82(2)3647050; e-Mail: jstae@yonsei.ac.kr;
Further Information

Publication History

Received 29 July 2009
Publication Date:
02 October 2009 (online)

Abstract

A highly efficient asymmetric total synthesis of ent-guadinomic acid [(-)-K01-0509 B] was accomplished from the known epoxy alkenol which is resolved by HKR method. Cross metathesis of the alkene part with acrylate and epoxide opening with azide followed by intramolecular guanidine formation reactions furnished ent-guadinomic acid.

    References and Notes

  • 1 Iwatsuki M. Uchida R. Yoshijima H. Ui H. Shiomi K. Matsumoto A. Takahashi Y. Abe A. Tomoda H. Omura S. J. Antibiot.  2008,  61:  222 
  • 2 Lingington RG. Robertson M. Gauthier A. Finlay BB. Soest RV. Andersen RJ. Org. Lett.  2002,  4:  4089 
  • 3 Iwatsuki M. Uchida R. Yoshijima H. Ui H. Shiomi K. Kim Y.-P. Hirose T. Sunazuka T. Abe A. Tomoda H. Omura S. J. Antibiot.  2008,  61:  230 
  • 4 Tsuchiya S. Sunazuka T. Hirose T. Mori R. Tanaka T. Iwatsuki M. Omura S. Org. Lett.  2006,  8:  5577 
  • 5 Hirose T. Sunazuka T. Tsuchiya S. Tanaka T. Kojima Y. Mori R. Iwatsuki M. Omura S. Chem. Eur. J.  2008,  14:  8220 
  • 6 Kuwahara A. Nishikiori T. Shimada N. Nakagawa T. Fukazawa H. Mizuno S. Uehara Y. J. Antibiot.  1997,  50:  712 
  • 7 Horii S. Kameda Y. J. Antibiot.  1968,  11:  665 
  • 8 Singh MP. Petersen PJ. Weiss WJ. Janso JE. Luckman SW. Lenoy EB. Bradford PA. Testa RT. Greenstein M. Antimicrob. Agents Chemother.  2003,  47:  62 
  • 9 Fellows LE. Hider RC. Bell EA. Phytochemistry  1977,  16:  1957 
  • 10 Matsunaga S. Moore RE. Niemczura WP. Carmichael WP. J. Am. Chem. Soc.  1989,  111:  8021 
  • 11a Kim Y.-J. Tae J. Synlett  2006,  61 
  • 11b Lee J. Jung Y.-H. Tae J. Bull. Korean Chem. Soc.  2007,  28:  513 
  • 11c Jung Y.-H. Lee J. Tae J. Chem. Asian J.  2007,  2:  656 
  • 11d Kim M.-Y. Kim H. Tae J. Synlett  2009,  1303 
  • 12 Connon SJ. Blechert S. Angew. Chem. Int. Ed.  2003,  42:  1900 
  • 13 Sabitha G. Babu RS. Rajkumar M. Yadav JS. Org. Lett.  2002,  4:  343 
  • 14a Crotti P. Di Bussolo V. Favero L. Macchia F. Pineschi M. Eur. J. Org. Chem.  1998,  1675 
  • 14b Nugent TC. Hudlicky T. J. Org. Chem.  1998,  63:  510 
  • 14c Chini M. Crotti P. Macchia F. Tetrahedron Lett.  1990,  31:  5641 
  • 14d Scriven EFV. Turnbull K. Chem. Rev.  1988,  88:  297 
  • 16a Baker TJ. Tomioka M. Goodman M. Org. Synth.  2002,  78:  91 
  • 16b Feichtinger K. Zapf C. Sings HL. Goodman M. J. Org. Chem.  1998,  63:  3804 
  • 16c Feichtinger K. Sings HL. Baker TJ. Matthews K. Goodman M. J. Org. Chem.  1998,  63:  8432 
  • 18a McLaughlin M. Palucki M. Davies IW. Org. Lett.  2006,  8:  3311 
  • 18b Dhar DN. Murthy KSK. Synthesis  1986,  437 
  • 19 Enders D. Fey P. Kipphardt H. Org. Synth.  1987,  65:  173 
15

The reason for the improvement of the regioselectivity is not clear.

17

The bulky and less nucleophilic Hünig’s base might minimize side reactions associated with the highly reactive Tf2O.