Geburtshilfe Frauenheilkd 2009; 69(10): 915-921
DOI: 10.1055/s-0029-1186006
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Genetische Faktoren beim HELLP-Syndrom – eine kritische Übersicht

Genetic Factors in HELLP Syndrome – A Critical OverviewS. Mütze1 , 2 , K. Zerres2 , W. Rath3
  • 1Marienhospital Düren, Abt. Gynäkologie und Geburtshilfe, St. Marien-Hospital Düren
  • 2Institut für Humangenetik, Universitätsklinikum der RWTH Aachen
  • 3Medizinische Fakultät des Universitätsklinikums Aachen (RWTH), Gynäkologie und Geburtshilfe, Aachen
Further Information

Publication History

eingereicht 20.3.2009 revidiert 29.6.2009

akzeptiert 6.7.2009

Publication Date:
22 October 2009 (online)

Zusammenfassung

Das HELLP-Syndrom ist eine schwere Form der Präeklampsie mit typischer laborchemischer Trias aus Hämolyse, pathologisch erhöhten Transaminasen und Thrombozytopenie < 100 000/µl und gehört auch heute noch zu den häufigsten Ursachen mütterlicher und kindlicher Morbidität und Mortalität und hat großen Anteil an der iatrogenen Frühgeburtlichkeit. Die Ätiologie und die zugrunde liegenden pathogenetischen Mechanismen sind noch nicht hinreichend geklärt. Eine genetische Komponente gilt mittlerweile als gesichert. Es gibt zahlreiche Hinweise, dass die immunologische Maladaptation, die plazentare Ischämie und der oxidative Stress einer genetischen Fehlsteuerung unterliegen. Die genetische Forschung bei Präeklampsie und HELLP-Syndrom umfasst genomweite Kopplungsanalysen, die Untersuchung von pathogenetisch vielversprechenden Kandidatengenen und Expressionsanalysen. Dabei wird deutlich, dass es das „Präeklampsie-“ oder „HELLP-Syndrom-Gen“ nicht gibt, sondern multifaktorielle, wahrscheinlich genetisch differente Determinanten an der Entstehung der Erkrankung beteiligt sind. Trotz intensiver Forschung gibt es bisher keine einheitlichen Ergebnisse, die die genetischen Mechanismen bei Präeklampsie/HELLP-Syndrom überzeugend erklären. Dabei sind unterschiedliche methodische Probleme bisheriger Studien unübersehbar. Die Zukunft dürfte in großen Multicenterstudien mit maternaler und fetaler Genotypisierung sowie genomweiten Assoziationsstudien liegen, die die gleichzeitige Analyse von mehreren tausend Polymorphismen ermöglichen.

Abstract

HELLP syndrome is a severe form of preeclampsia with a typical triad of hemolysis (H), elevated liver enzymes (EL) and low platelets (LP, thrombocytopenia < 100 000/µl) and remains a leading cause of maternal and perinatal mortality and morbidity, especially of preterm birth. The etiology and the underlying pathogenetic mechanisms are still unclear. Preeclampsia and HELLP syndrome have a clear genetic component, and immune maladaptation, placental ischemia and increased oxidative stress may all have genetic implications. Genetic research into preeclampsia and HELLP syndrome has focused on genome-wide linkage studies, the analysis of candidate genes and gene expression profiling. From the results obtained to date, it seems likely that not one single gene but rather a panel of different genetic determinants accounts for the susceptibility for HELLP syndrome and preeclampsia. Despite extensive research into preeclampsia and HELLP syndrome during the last decade, the exact genetic mechanisms are still unknown. This may at least in part be explained by the methodological problems of genetic association studies. Large multi-center studies including fetal and maternal genotyping and genome-wide association studies will be required to validate possible associations with preeclampsia and HELLP syndrome.

Literatur

  • 1 Rath W. Hypertensive Schwangerschaftserkrankungen. Rath W, Friese K Erkrankungen in der Schwangerschaft. Stuttgart, New York; Georg Thieme Verlag 2005: 73-97
  • 2 Rathi U, Bapat M, Rathi P et al. Effect of liver disease on maternal and fetal outcome – a prospective study.  Indian J Gastroenterol. 2007;  26 59-63
  • 3 Rath W, Faridi A, Dudenhausen J W. HELLP syndrome.  J Perinat Med. 2000;  28 249-260
  • 4 Haram K, Svendsen E, Abildgaard U. The HELLP syndrome: clinical issues and management. A review.  BMC Pregnancy Childbirth. 2009;  9 8
  • 5 Gupta S, Agarwal A, Sharma R K. The role of placental oxidative stress and lipid peroxidation in preeclampsia.  Obstet Gynecol Surv. 2005;  60 807-816
  • 6 Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia.  Biol Reprod. 2003;  69 1-7
  • 7 Sibai B, Dekker G, Kupferminc M. Pre-eclampsia.  Lancet. 2005;  365 785-799
  • 8 Wilson M L, Goodwin T M, Pan V L et al. Molecular epidemiology of preeclampsia.  Obstet Gynecol Surv. 2003;  58 39-66
  • 9 Mutze S, Rudnik-Schoneborn S, Zerres K et al. Genes and the preeclampsia syndrome.  J Perinat Med. 2008;  36 38-58
  • 10 Chesley L C, Annitto J E, Cosgrove R A. The familial factor in toxemia of pregnancy.  Obstet Gynecol. 1968;  32 303-311
  • 11 Mogren I, Hogberg U, Winkvist A et al. Familial occurrence of preeclampsia.  Epidemiology. 1999;  10 518-522
  • 12 Lie R T, Rasmussen S, Brunborg H et al. Fetal and maternal contributions to risk of pre-eclampsia: population based study.  BMJ. 1998;  316 1343-1347
  • 13 Campbell D M, MacGillivray I, Carr-Hill R. Pre-eclampsia in second pregnancy.  Br J Obstet Gynaecol. 1985;  92 131-140
  • 14 Hjartardottir S, Leifsson B G, Geirsson R T et al. Recurrence of hypertensive disorder in second pregnancy.  Am J Obstet Gynecol. 2006;  194 916-920
  • 15 Sibai B M, Mercer B, Sarinoglu C. Severe preeclampsia in the second trimester: recurrence risk and long-term prognosis.  Am J Obstet Gynecol. 1991;  165 1408-1412
  • 16 Trogstad L, Skrondal A, Stoltenberg C et al. Recurrence risk of preeclampsia in twin and singleton pregnancies.  Am J Med Genet A. 2004;  126 A 41-45
  • 17 Chames M C, Haddad B, Barton J R et al. Subsequent pregnancy outcome in women with a history of HELLP syndrome at < or = 28 weeks of gestation.  Am J Obstet Gynecol. 2003;  188 1504-1507 discussion 1507-1508
  • 18 Sibai B M, Ramadan M K, Chari R S et al. Pregnancies complicated by HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets): subsequent pregnancy outcome and long-term prognosis.  Am J Obstet Gynecol. 1995;  172 125-129
  • 19 Sullivan C A, Magann E F, Perry Jr. K G et al. The recurrence risk of the syndrome of hemolysis, elevated liver enzymes, and low platelets (HELLP) in subsequent gestations.  Am J Obstet Gynecol. 1994;  171 940-943
  • 20 van Rijn B B, Hoeks L B, Bots M L et al. Outcomes of subsequent pregnancy after first pregnancy with early-onset preeclampsia.  Am J Obstet Gynecol. 2006;  195 723-728
  • 21 O'Shaughnessy K M, Ferraro F, Fu B et al. Identification of monozygotic twins that are concordant for preeclampsia.  Am J Obstet Gynecol. 2000;  182 1156-1157
  • 22 Oudejans C B, Mulders J, Lachmeijer A M et al. The parent-of-origin effect of 10q22 in pre-eclamptic females coincides with two regions clustered for genes with down-regulated expression in androgenetic placentas.  Mol Hum Reprod. 2004;  10 589-598
  • 23 Sutherland A, Cooper D W, Howie P W et al. The indicence of severe pre-eclampsia amongst mothers and mothers-in-law of pre-eclamptics and controls.  Br J Obstet Gynaecol. 1981;  88 785-791
  • 24 Cross J C. The genetics of pre-eclampsia: a feto-placental or maternal problem?.  Clin Genet. 2003;  64 96-103
  • 25 Esplin M S, Fausett M B, Fraser A et al. Paternal and maternal components of the predisposition to preeclampsia.  N Engl J Med. 2001;  344 867-872
  • 26 Lachmeijer A M, Arngrimsson R, Bastiaans E J et al. A genome-wide scan for preeclampsia in the Netherlands.  Eur J Hum Genet. 2001;  9 758-764
  • 27 Buimer M, Keijser R, Jebbink J M et al. Seven placental transcripts characterize HELLP-syndrome.  Placenta. 2008;  29 444-453
  • 28 Zintzaras E, Kitsios G, Harrison G A et al. Heterogeneity-based genome search meta-analysis for preeclampsia.  Hum Genet. 2006;  120 360-370
  • 29 Kupferminc M J. Thrombophilia and pregnancy.  Curr Pharm Des. 2005;  11 735-748
  • 30 Kist W J, Janssen N G, Kalk J J et al. Thrombophilias and adverse pregnancy outcome – a confounded problem!.  Thromb Haemost. 2008;  99 77-85
  • 31 Muetze S, Leeners B, Ortlepp J R et al. Maternal factor V Leiden mutation is associated with HELLP syndrome in Caucasian women.  Acta Obstet Gynecol Scand. 2008;  87 635-642
  • 32 Schlembach D, Beinder E, Zingsem J et al. Association of maternal and/or fetal factor V Leiden and G20210A prothrombin mutation with HELLP syndrome and intrauterine growth restriction.  Clin Sci (Lond). 2003;  105 279-285
  • 33 Robertson L, Wu O, Langhorne P et al. Thrombophilia in pregnancy: a systematic review.  Br J Haematol. 2006;  132 171-196
  • 34 Lin J, August P. Genetic thrombophilias and preeclampsia: a meta-analysis.  Obstet Gynecol. 2005;  105 182-192
  • 35 Gibson C S, MacLennan A H, Janssen N G et al. Associations between fetal inherited thrombophilia and adverse pregnancy outcomes.  Am J Obstet Gynecol. 2006;  194 947.e1-10
  • 36 Dizon-Townson D, Miller C, Sibai B et al. The relationship of the factor V Leiden mutation and pregnancy outcomes for mother and fetus.  Obstet Gynecol. 2005;  106 517-524
  • 37 Currie L, Peek M, McNiven M et al. Is there an increased maternal-infant prevalence of Factor V Leiden in association with severe pre-eclampsia?.  BJOG. 2002;  109 191-196
  • 38 Muetze S, Eggermann T, Leeners B et al. The 4 G/5 G polymorphism in the plasminogen activator inhibitor-1 gene is not associated with HELLP syndrome.  J Thromb Thrombolysis. 2009;  27 141-145
  • 39 Wiwanitkit V. Correlation between plasminogen activator inhibitor-1 4 G/5 G polymorphism and pre-eclampsia: an appraisal.  Arch Gynecol Obstet. 2006;  273 322-324
  • 40 Zusterzeel P L, Peters W H, Burton G J et al. Susceptibility to pre-eclampsia is associated with multiple genetic polymorphisms in maternal biotransformation enzymes.  Gynecol Obstet Invest. 2007;  63 209-213
  • 41 Ibdah J A, Bennett M J, Rinaldo P et al. A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women.  N Engl J Med. 1999;  340 1723-1731
  • 42 Tyni T, Ekholm E, Pihko H. Pregnancy complications are frequent in long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency.  Am J Obstet Gynecol. 1998;  178 603-608
  • 43 IJlst L, Ruiter J P, Hoovers J M et al. Common missense mutation G1528C in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and expression of the mutant protein, mutation analysis on genomic DNA and chromosomal localization of the mitochondrial trifunctional protein alpha subunit gene.  J Clin Invest. 1996;  98 1028-1033
  • 44 Mütze S, Ahillen I, Rudnik-Schoeneborn S et al. Neither maternal nor fetal mutation (E474Q) in the alpha-subunit of the trifunctional protein is frequent in pregnancies complicated by HELLP syndrome.  J Perinat Med. 2007;  35 76-78
  • 45 den Boer M E, Wanders R J, Morris A A et al. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: clinical presentation and follow-up of 50 patients.  Pediatrics. 2002;  109 99-104
  • 46 Yang Z, Yamada J, Zhao Y et al. Prospective screening for pediatric mitochondrial trifunctional protein defects in pregnancies complicated by liver disease.  JAMA. 2002;  288 2163-2166
  • 47 Fakhouri F, Jablonski M, Lepercq J et al. Factor H, membrane cofactor protein, and factor I mutations in patients with hemolysis, elevated liver enzymes, and low platelet count syndrome.  Blood. 2008;  112 4542-4545
  • 48 Sziller I, Babula O, Hupuczi P et al. Mannose-binding lectin (MBL) codon 54 gene polymorphism protects against development of pre-eclampsia, HELLP syndrome and pre-eclampsia-associated intrauterine growth restriction.  Mol Hum Reprod. 2007;  13 281-285
  • 49 Daher S, Sass N, Oliveira L G et al. Cytokine genotyping in preeclampsia.  Am J Reprod Immunol. 2006;  55 130-135
  • 50 Molvarec A, Jermendy A, Nagy B et al. Association between tumor necrosis factor (TNF)-alpha G-308A gene polymorphism and preeclampsia complicated by severe fetal growth restriction.  Clin Chim Acta. 2008;  392 52-57
  • 51 van Rijn B B, Franx A, Steegers E A et al. Maternal TLR4 and NOD2 gene variants, pro-inflammatory phenotype and susceptibility to early-onset preeclampsia and HELLP syndrome.  PLoS ONE. 2008;  3 e1865
  • 52 van Dijk M, Mulders J, Poutsma A et al. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family.  Nat Genet. 2005;  37 514-519
  • 53 Berends A L, Bertoli-Avella A M, de Groot C J et al. STOX1 gene in pre-eclampsia and intrauterine growth restriction.  BJOG. 2007;  114 1163-1167
  • 54 Iglesias-Platas I, Monk D, Jebbink J et al. STOX1 is not imprinted and is not likely to be involved in preeclampsia.  Nat Genet. 2007;  39 279-280 author reply 280-281
  • 55 Kivinen K, Peterson H, Hiltunen L et al. Evaluation of STOX1 as a preeclampsia candidate gene in a population-wide sample.  Eur J Hum Genet. 2007;  15 494-497
  • 56 Johnson M P, Fitzpatrick E, Dyer T D et al. Identification of two novel quantitative trait loci for pre-eclampsia susceptibility on chromosomes 5q and 13q using a variance components-based linkage approach.  Mol Hum Reprod. 2007;  13 61-67
  • 57 Moses E K, Fitzpatrick E, Freed K A et al. Objective prioritization of positional candidate genes at a quantitative trait locus for pre-eclampsia on 2q22.  Mol Hum Reprod. 2006;  12 505-512
  • 58 Serrano N C, Diaz L A, Paez M C et al. Angiotensin-converting enzyme I/D polymorphism and preeclampsia risk: evidence of small-study bias.  PLoS Med. 2006;  3 e520
  • 59 Medica I, Kastrin A, Peterlin B. Genetic polymorphisms in vasoactive genes and preeclampsia: a meta-analysis.  Eur J Obstet Gynecol Reprod Biol. 2007;  131 115-126
  • 60 Muetze S, Knyrim E, Eggermann T et al. L43F mutation of the angiotensinogen gene in a patient with HELLP syndrome and fetal death.  Hypertension in Pregnancy. 2008;  , in press
  • 61 Inoue I, Rohrwasser A, Helin C et al. A mutation of angiotensinogen in a patient with preeclampsia leads to altered kinetics of the renin-angiotensin system.  J Biol Chem. 1995;  270 11430-11436
  • 62 Venkatesha S, Toporsian M, Lam C et al. Soluble endoglin contributes to the pathogenesis of preeclampsia.  Nat Med. 2006;  12 642-649
  • 63 Stepan H, Geipel A, Schwarz F et al. Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion.  Am J Obstet Gynecol. 2008;  198 175.e1-6
  • 64 Romero R, Nien J K, Espinoza J et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate.  J Matern Fetal Neonatal Med. 2008;  21 9-23
  • 65 Levine R J, Lam C, Qian C et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia.  N Engl J Med. 2006;  355 992-1005
  • 66 Kang B Y, Tsoi S, Zhu S et al. Differential gene expression profiling in HELLP syndrome placentas.  Reprod Sci. 2008;  15 285-294
  • 67 Colhoun H M, McKeigue P M, Davey Smith G. Problems of reporting genetic associations with complex outcomes.  Lancet. 2003;  361 865-872
  • 68 Chappell S, Morgan L. Searching for genetic clues to the causes of pre-eclampsia.  Clin Sci (Lond). 2006;  110 443-458

Dr. med. Sabine Mütze

St. Marien-Hospital Düren
Gynäkologie und Geburtshilfe

Hospitalstraße 44

52353 Düren

Email: sabinemuetze@gmx.de

    >