Geburtshilfe Frauenheilkd 2009; 69(2): 138-144
DOI: 10.1055/s-0029-1185334
Translationale Forschung

© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Mechanismen der Chemoresistenz und Möglichkeiten der Überwindung

Molecular Mechanisms of Chemoresistance and Potential Means of Overcoming ItO. Gluz1 , C. Liedtke2 , U. Nitz1 , N. Harbeck3
  • 1Westdeutsche Studiengruppe gGmbH, und Brustzentrum Nierrhein/Evangelisches Krankenhaus Bethesda, Mönchengladbach
  • 2Universitätsklinikum Münster, Klinik für Frauenheilkunde und Geburtshilfe, Münster
  • 3Klinikum rechts der Isar, TZ München, München
Further Information

Publication History

Publication Date:
17 February 2009 (online)

Zusammenfassung

Aufgrund der multiplen zugrunde liegenden genetischen Veränderungen stellt das Mammakarzinom eine nur partiell chemosensitive Erkrankung dar. Diese Veränderungen betreffen in erster Linie Zellzyklusregulation (z. B. über p53-Funktion), Apoptose, DNA-Reparaturmechanismen, Tumor-Stroma-Interaktionen und Transportmechanismen der Zelle. Die Chemoresistenz kann primärer intrinsischer Natur sein, was z. B. bei Stammzellen diskutiert wird, oder sich sekundär extrinsisch ausbilden, was im Verlauf der Therapie auf verschiedenen Wegen entstehen kann. Bislang haben Daten zu Resistenzmechanismen wenig Eingang in die Planung von Chemotherapieregimes gefunden, mit zunehmender Kenntnis molekularer Tumorprofile und molekularer Zielstrukturen für die herkömmlichen Chemotherapieregimes könnte sich dies jedoch ändern.

Abstract

Due to its numerous genetic aberrations, breast cancer is an only partially chemosensitive disease. These genetic changes predominantly affect cell cycle regulation (e.g., via the p53 function), apoptosis, DNA repair mechanisms, tumor-stroma interactions, and the drug transport activities of the tumor cell. Chemoresistance can be of a primary/intrinsic nature, as is currently being discussed for tumor stem cells, or of a secondary/extrinsic nature, emerging, for example, during chemotherapeutic treatment or disease progression. So far, data on chemoresistance has only gradually begun to influence clinical management and the design of chemotherapy regimens. This is likely to change in the near future due to the increased knowledge of tumor profiling and molecular target structures.

Literatur

  • 1 Rastogi P, Anderson S J, Bear H D. et al . Preoperative chemotherapy: Updates of national surgical adjuvant breast and bowel project protocols B‐18 and B‐27.  J Clin Oncol. 2008;  26 778-785
  • 2 Liedtke C, Symmans W, Hatzis C. et al . The Genomic Grade Index (GGI) is associated with response to neoadjuvant chemotherapy in patients with breast cancer.  J Clin Oncol. 2009; 
  • 3 Liedtke C, Mazouni C, Hess K R. et al . Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer.  J Clin Oncol. 2008;  26 1275-1281
  • 4 Tordai A, Wang J, Andre F. et al . Evaluation of biological pathways involved in chemotherapy response in breast cancer.  Breast Cancer Research. 2008;  10 R37
  • 5 Kruh D. Introduction to resistance to anticancer agents.  Oncogene. 2003;  22 7262-7264
  • 6 Scotto K W. Transcriptional regulation of ABC drug transporters.  Oncogene. 2003;  22 7496
  • 7 Pritchard K I, Messersmith H, Elavathil L. et al . HER‐2 and topoisomerase II as predictors of response to chemotherapy.  J Clin Oncol. 2008;  26 736-744
  • 8 Honma K, Iwao-Koizumi K, Takeshita F. et al . RPN2 gene confers docetaxel resistance in breast cancer.  Nat Med. 2008;  14 939
  • 9 Trock B, Leonessa F, Clarke R. Multidrug resistance and breast cancer: a meta-analysis of MDR1 and its clinical significance.  Breast Cancer Research and Treatment. 2007;  106 Abstract 37
  • 10 Saeki T, Nomizu T, Toi M. et al . Dofequidar fumarate (MS‐209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer.  J Clin Oncol. 2007;  25 411-417
  • 11 Gottesman M M, Fojo T, Bates S E. Multidrug resistance in cancer: role of ATP-dependent transporters.  Nat Rev Cancer. 2002;  2 48
  • 12 Filipits M, Pohl G, Rudas M. et al . Clinical role of multidrug resistance protein 1 expression in chemotherapy resistance in early-stage breast cancer: The Austrian Breast and Colorectal Cancer Study Group.  J Clin Oncol. 2005;  23 1161-1168
  • 13 Kuwano M, Oda Y, Izumi H. et al . The role of nuclear Y‐box binding protein 1 as a global marker in drug resistance.  Mol Cancer Ther. 2004;  3 1485-1492
  • 14 Ohga T, Uchiumi T, Makino Y. et al . Direct involvement of the Y‐box binding protein YB‐1 in genotoxic stress-induced activation of the human multidrug resistance 1 Gene. J.  Biol Chem. 1998;  273 5997-6000
  • 15 Fujita T, Ito K, Izumi H. et al . Increased nuclear localization of transcription factor Y‐box binding protein 1 accompanied by up-regulation of P-glycoprotein in breast cancer pretreated with paclitaxel.  Clin Cancer Res. 2005;  11 8837-8844
  • 16 Basaki Y, Hosoi F, Oda Y. et al . Akt-dependent nuclear localization of Y‐box-binding protein 1 in acquisition of malignant characteristics by human ovarian cancer cells.  Oncogene. 2006;  26 2736
  • 17 Gluz O, Kates R, Schmitt M. et al . YB‐1 expression and effectiveness of different dose-intensification strategies in high-risk breast cancer: Five-year follow-up results of prospective randomized WSG‐AM‐01 trial.  J Clin Oncol (Meeting Abstracts). 2007;  25 Abstract 563
  • 18 Homer C, Knight D A, Hananeia L. et al . Y‐box factor YB1 controls p 53 apoptotic function.  Oncogene. 2005;  24 8314
  • 19 Holm P S, Lage H, Bergmann S. et al . Multidrug-resistant cancer cells facilitate E1-independent adenoviral replication: Impact for cancer gene therapy.  Cancer Res. 2004;  64 322-328
  • 20 Cusatis G, Sparreboom A. Pharmacogenomic importance of ABCG2.  Pharmacogenomics. 2008;  9 1005-1009
  • 21 Kakarala M, Wicha M S. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy.  J Clin Oncol. 2008;  26 2813-2820
  • 22 Li X, Lewis M T, Huang J. et al . Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy.  J Natl Cancer Inst. 2008;  100 672-679
  • 23 Magni M, Shammah S, Schiro R. et al . Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer.  Blood. 1996;  87 1097-1103
  • 24 Mackey J R, Jennings L L, Clarke M L. et al . Immunohistochemical variation of human equilibrative nucleoside transporter 1 protein in primary breast cancers.  Clin Cancer Res. 2002;  8 110-116
  • 25 Kuo M, Chen H, Song I-S. et al . The roles of copper transporters in cisplatin resistance.  Cancer and Metastasis Reviews. 2007;  26 71
  • 26 Assaraf Y. Molecular basis of antifolate resistance.  Cancer and Metastasis Reviews. 2007;  26 153
  • 27 Tan S-H, Lee S-C, Goh B-C. et al . Pharmacogenetics in breast cancer therapy.  Clin Cancer Res. 2008;  14 8027-8041
  • 28 Fan L, Goh B-C, Wong C-I. et al . Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity.  Pharmacogenetics & Genomics. 2008;  18 623-631
  • 29 Henningsson A, Marsh S, Loos W J. et al . Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel.  Clin Cancer Res. 2005;  11 8097-8104
  • 30 Steed H, Sawyer M B. Pharmacology, pharmacokinetics and pharmacogenomics of paclitaxel.  Pharmacogenomics. 2007;  8 803-815
  • 31 Marsh S, Paul J, King C R. et al . Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: The Scottish randomised trial in ovarian cancer.  J Clin Oncol. 2007;  25 4528-4535
  • 32 Townsend D M, Tew K D. The role of glutathione-S-transferase in anti-cancer drug resistance.  Oncogene. 2003;  22 7369
  • 33 Ambrosone C B, Sweeney C, Coles B F. et al . Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer.  Cancer Res. 2001;  61 7130-7135
  • 34 Ambrosone C B, Barlow W, Yeh I-T. et al . Pharmacogenetics and breast cancer treatment outcomes: results on oxidative stress-related genotypes (MPO, MnSOD) from a southwest oncology group intergroup trial (INT-0102).  Breast Cancer Res Treat. 2006;  100 (Suppl. 1) Abstract 37
  • 35 Ekhart C, Rodenhuis S, Smits P. et al . An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment.  Cancer Treat Rev. 2008; 
  • 36 Largillier R, Etienne-Grimaldi M-C, Formento J-L. et al . Pharmacogenetics of capecitabine in advanced breast cancer patients.  Clin Cancer Res. 2006;  12 5496-5502
  • 37 Andreetta C, Puppin C, Minisini A. et al . Thymidine phosphorylase expression and benefit from capecitabine in patients with advanced breast cancer.  Ann Oncol. 2008; 
  • 38 Pusztai L. Markers predicting clinical benefit in breast cancer from microtubule-targeting agents.  Ann Oncol. 2007;  18 xii15-20
  • 39 Martin L P, Hamilton T C, Schilder R J. Platinum resistance: The role of DNA repair pathways.  Clin Cancer Res. 2008;  14 1291-1295
  • 40 Zheng L, Li S, Boyer T G. et al . Lessons learned from BRCA1 and BRCA2.  Oncogene. 2000;  19 6159-6175
  • 41 Kennedy R D, Quinn J E, Mullan P B. et al . The role of BRCA1 in the cellular response to chemotherapy.  J Natl Cancer Inst. 2004;  96 1659-1668
  • 42 Lakhani S, Van De Vijver M, Jacquemier J. et al . The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER‐2, and p 53 in patients with mutations in BRCA1 and BRCA2.  J Clin Oncol. 2002;  20 2310-2318
  • 43 Gluz O, Nitz U A, Harbeck N. et al . Triple-negative high-risk breast cancer derives particular benefit from dose intensification of adjuvant chemotherapy: results of WSG AM‐01 trial.  Ann Oncol. 2008;  19 861-870
  • 44 Gluz O, Wild P, Meiler R. et al . Nuclear karyopherin alpha2 expression predicts poor survival in patients with advanced breast cancer irrespective of treatment intensity.  International Journal of Cancer. 2008;  123 1433-1438
  • 45 Shafee N, Smith C R, Wei S. et al . Cancer stem cells contribute to cisplatin resistance in Brca1/p 53-mediated mouse mammary tumors.  Cancer Res. 2008;  68 3243-3250
  • 46 Evers B, Drost R, Schut E. et al . Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin.  Clin Cancer Res. 2008;  14 3916-3925
  • 47 El-Deiry W S. The role of p 53 in chemosensitivity and radiosensitivity.  Oncogene. 2003;  22 7486
  • 48 Kutuk O, Letai A. Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT‐737.  Cancer Res. 2008;  68 7985-7994
  • 49 Kroger N, Milde-Langosch K, Riethdorf S. et al . Prognostic and predictive effects of immunohistochemical factors in high-risk primary breast cancer patients.  Clin Cancer Res. 2006;  12 159-168
  • 50 Di Leo A, Tanner M, Desmedt C. et al . p-53 gene mutations as a predictive marker in a population of advanced breast cancer patients randomly treated with doxorubicin or docetaxel in the context of a phase III clinical trial.  Ann Oncol. 2007;  18 997-1003
  • 51 Diallo-Danebrock R, Ting E, Gluz O. et al . Protein expression profiling in high-risk breast cancer patients treated with high-dose or conventional dose-dense chemotherapy.  Clin Cancer Res. 2007;  13 488-497
  • 52 Nitz U, Gluz O, Herr A. et al . Retrospective analysis of WSG AM01 tandem high dose chemotherapy trial in high risk primary breast cancer: A hypothesis generating study.  J Clin Oncol (Meeting Abstracts). 2006;  24 Abstract 665
  • 53 Lehmann-Che J, André F, Desmedt C. et al . p 53 mutations to predict efficacy of alkylating-containing regimen: a metaanalysis of four different clinical trials.  SABCS. 2008;  Abstract 1067
  • 54 Bazan-Peregrino M, Carlisle R C, Hernandez-Alcoceba R. et al . Human Gene Therapy. 2008;  19 873-886
  • 55 Thussbas C, Nahrig J, Streit S. et al . FGFR4 Arg388 allele is associated with resistance to adjuvant therapy in primary breast cancer.  J Clin Oncol. 2006;  24 3747-3755
  • 56 Alaoui-Jamali M A, Paterson J, Al Moustafa A E. et al . The role of ErB‐2 tyrosine kinase receptor in cellular intrinsic chemoresistance: mechanisms and implications.  Biochemistry and Cell Biology. 1997;  75 315-325
  • 57 Slamon D J, Leyland-Jones B, Shak S. et al . Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.  N Engl J Med. 2001;  344 783-792
  • 58 Martelli A, Faenza I, Billi A. et al . Intranuclear 3′-phosphoinositide metabolism and Akt signaling: new mechanisms for tumorigenesis and protection against apoptosis?.  Cell Signal. 2006;  18 1101-1107
  • 59 Vogt P, Kang S, Elsliger M. et al . Cancer-specific mutations in phosphatidylinositol 3-kinase.  Trends Biochem Sci. 2007;  32 342-349
  • 60 Martelli A, Cocco L, Capitani S. et al . Nuclear phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3-kinase, Akt, and PTen: emerging key regulators of anti-apoptotic signaling and carcinogenesis.  Eur J Histochem. 2007;  51 125-131
  • 61 Samuels Y, Wang Z, Bardelli A. et al . High frequency of mutations of the PIK3CA gene in human cancers.  Science. 2004;  304 554
  • 62 Jin W, Wu L, Liang K. et al . Roles of the PI‐3K and MEK pathways in Ras-mediated chemoresistance in breast cancer cells.  Br J Cancer. 2003;  89 185-191
  • 63 Knuefermann C, Lu Y, Liu B. et al . HER2/PI‐3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells.  Oncogene. 2003;  22 3205
  • 64 Liedtke C, Cardone L, Tordai A. et al . PIK3CA-activating mutations and chemotherapy sensitivity in stage II–III breast cancer.  Breast Cancer Research. 2008;  10 R27
  • 65 Casey T, Bond J, Tighe S. et al . Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer.  Breast Cancer Research and Treatment. 2009;  114 47-62
  • 66 Tredan O, Galmarini C M, Patel K. et al . Drug resistance and the solid tumor microenvironment.  J Natl Cancer Inst. 2007;  99 1441-1454
  • 67 Teicher B A, Herman T S, Holden S A. et al . Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo.  Science. 1990;  247 1457-1461
  • 68 Misra S, Ghatak S, Toole B P. Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2.  J Biol Chem. 2005;  280 20310-20315
  • 69 Weaver V M, Lelièvre S, Lakins J N. et al . 24 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium.  Cancer Cell. 2002;  2 205
  • 70 Graessmann M, Berg B, Fuchs B. et al . Chemotherapy resistance of mouse WAP‐SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3.  Oncogene. 2006;  26 2840
  • 71 Farmer P, Bonnefoi H, Anderle P. et al . A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer.  Nat Med. 2009;  15 68
  • 72 Finak G, Bertos N, Pepin F. et al . Stromal gene expression predicts clinical outcome in breast cancer.  Nat Med. 2008;  14 518
  • 73 Pouyssegur J, Dayan F, Mazure N M. Hypoxia signalling in cancer and approaches to enforce tumour regression.  Nature. 2006;  441 437
  • 74 Graeber T G, Osmanian C, Jacks T. et al . Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours.  Nature. 1996;  379 88
  • 75 Kondo A, Safaei R, Mishima M. et al . Hypoxia-induced enrichment and mutagenesis of cells that have lost DNA mismatch repair.  Cancer Res. 2001;  61 7603-7607
  • 76 Comerford K M, Wallace T J, Karhausen J. et al . Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene.  Cancer Res. 2002;  62 3387-3394
  • 77 Chiche J, Ilc K, Laferriere J. et al . Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH.  Cancer Res. 2009;  69 358-368
  • 78 Gerweck L E, Vijayappa S, Kozin S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics.  Mol Cancer Ther. 2006;  5 1275-1279
  • 79 Dreher M R, Liu W, Michelich C R. et al . Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers.  J Natl Cancer Inst. 2006;  98 335-344
  • 80 Miller K, Wang M, Gralow J. et al . Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer.  N Engl J Med. 2007;  357 2666-2676
  • 81 Shaked Y, Henke E, Roodhart J ML. et al . Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: Implications for antiangiogenic drugs as chemosensitizing agents.  Cancer Cell. 2008;  14 263-273
  • 82 Pietras K, Rubin K, Sjoblom T. et al . Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy.  Cancer Res. 2002;  62 5476-5484
  • 83 Pietras K, Hanahan D. A multitargeted, metronomic, and maximum-tolerated dose “Chemo-Switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer.  J Clin Oncol. 2005;  23 939-952

MD Oleg Gluz

Wissenschaftlicher Mitarbeiter
Westdeutsche Studiengruppe

Ludwig-Weber-Straße 15

41061 Mönchengladbach

Email: oleg.gluz@wsg-online.com

    >