Synlett 2009(7): 1073-1076  
DOI: 10.1055/s-0028-1088117
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Direct Cobalt-Catalyzed Conjugate Addition of Functionalized Aryl Halides and Triflates: A New Strategy for the Conjugate Addition onto Methyl Vinyl Ketone

Muriel Amatore, Corinne Gosmini*
Laboratoire Hétéroéléments et Coordination, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
Fax: +33(1)69334440; e-Mail: corinne.gosmini@polytechnique.edu;
Further Information

Publication History

Received 28 January 2009
Publication Date:
26 March 2009 (online)

Abstract

An efficient cobalt-catalyzed method for the direct conjugate addition of functionalized aryl halides or triflates onto methyl vinyl ketone is described. The experimentally simple procedure relies on the use of a catalytic system consisting of CoBr2(Bpy) and zinc and does not require the preformation of a stoichiometric organometallic species. The approach described herein displays considerable functional-group compatibility at good to excellent yields.

    References and Notes

  • 1a Perlmutter P. Conjugate Addition Reactions in Organic Synthesis   Vol. 9:  Baldwin JE. Magnus PD. Tetrahedron Organic Chemistry Series, Pergamon Press; Oxford: 1992. 
  • 1b Yamamoto Y. In Houben-Weyl   4th ed., Vol. 4 E21:  Helmchen G. Hoffmann RW. Mulzer J. Schaumann E. Thieme; Stuttgart: 1996.  Chap. 1.5.2.1.
  • 1c Tomioka K. Nagaoka Y. In Comprehensive Asymmetric Catalysis   Vol. 3:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer Verlag; Berlin, Heidelberg: 1999.  Chap. 31.1.
  • Selected references:
  • 2a Taylor RJK. In Organocopper Reagents, A Practical Approach   Harwood LM. Moody CJ. Oxford University Press; Oxford: 1994. 
  • 2b Breit B. Schmidt Y. Chem. Rev.  2008,  108:  2928 
  • 2c Alexakis A. Bäckvall JE. Krause N. Pàmies O. Diéguez M. Chem. Rev.  2008,  108:  2796 
  • 2d Harutyunyan SR. den Hartog T. Geurts K. Minnaard AJ. Feringa BL. Chem. Rev.  2008,  108:  2824 
  • 2e Gutnov A. Eur. J. Org. Chem.  2008,  4547 
  • 2f Knochel P. Singer D. Chem. Rev.  1993,  93:  2117 
  • 2g Westermann J. Imberg U. Nguyen AT. Nickisch K. Eur. J. Inorg. Chem.  1998,  295 
  • 2h Nishikata T. Yamamoto Y. Miyaura N. Organometallics  2004,  23:  4317 
  • 2i Hayashi T. Yamasaki K. Chem. Rev.  2003,  103:  2829 
  • 2j Fagnou K. Lautens M. Chem. Rev.  2003,  103:  169 
  • 2k Thaler T. Knochel P. Angew. Chem. Int. Ed.  2009,  48:  645 
  • 2l Henon H. Mauduit M. Alexakis A. Angew. Chem. Int. Ed.  2008,  47:  9122 
  • 2m Hawner C. Li K. Cirriez V. Alexakis A. Angew. Chem. Int. Ed.  2008,  47:  8211 
  • 2n Robert T. Velder J. Schmalz H.-G. Angew. Chem. Int. Ed.  2008,  47:  7718 
  • 3a Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 3b Boldrini GP. Savoia D. Tagliavini E. Trombini C. Umani Ronchi A. J. Organomet. Chem.  1986,  301:  C62 
  • 3c Lebedev S. Lopatina VS. Petrov ES. Beletskaya IP. J. Organomet. Chem.  1988,  344:  253 
  • 3d Sustmann R. Hopp P. Holl P. Tetrahedron Lett.  1989,  30:  689 
  • 3e Bontempelli G. Magno F. Daniele S. Schavion G. J. Electroanal. Chem.  1983,  159:  117 
  • 3f Bonjoch J. Solé D. Carcía-Rubio S. Bosch J. J. Am. Chem. Soc.  1997,  119:  7230 
  • 3g Yu S. Berner M. Cook JM. J. Am. Chem. Soc.  2000,  122:  7827 
  • 3h Nicolaou KC. Roecker AJ. Follmann M. Baati R. Angew. Chem. Int. Ed.  2002,  41:  2107 
  • 3i Subburaj K. Montgomery J.
    J. Am. Chem. Soc.  2003,  125:  11210 
  • 3j Condon S. Nédélec J.-Y. Synthesis  2004,  3070 
  • 3k Gomes P. Gosmini C. Nédélec J.-Y. Périchon J. Tetrahedron Lett.  2002,  43:  5901 
  • 3l Gomes P. Gosmini C. Nédélec J.-Y. Périchon J. Tetrahedron Lett.  2000,  41:  3385 
  • 3m Curran DP. Wolin RL. Synlett  1991,  317 
  • 3n Rivkin A. Nagashima T. Curran DP. Org. Lett.  2003,  5:  419 
  • 3o Molander GA. Harris CR. Tetrahedron  1998,  54:  3321 
  • 3p Bazin S. Feray L. Siri D. Naubron J.-V. Bertrand MP. Chem Commun.  2002,  2506 
  • 4a Amatore M. Gosmini C. Périchon J. J. Org. Chem.  2006,  71:  6130 
  • 4b Amatore M, Gosmini C, and Périchon J. inventors; FR  2865203. 
  • Selected references:
  • 5a Gosmini C. Bégouin J.-M. Moncomble A. Chem. Commun.  2008,  3221 
  • 5b Amatore M. Gosmini C. Angew. Chem. Int. Ed.  2008,  47:  2089 
  • 5c Fillon H. Gosmini C. Périchon J. J. Am. Chem. Soc.  2003,  125:  3867 
  • 5d Hess W. Treutwein J. Hilt G. Synthesis  2008,  3537 
  • 5e Cahiez G. Chaboche C. Duplais C. Moyeux A. Org. Lett.  2009,  11:  277 
  • 5f Cahiez G. Chaboche C. Duplais C. Giulliani A. Moyeux A. Adv. Synth. Catal.  2008,  350:  1484 
  • 5g Jeganmohan M. Cheng C.-H. Chem. Eur. J.  2008,  14:  10876 
  • 5h Shukla P. Hsu Y.-C. Cheng C.-H. J. Org. Chem.  2006,  71:  655 
  • 5i Kobayashi T. Ohmiya H. Yorimitsu H. Oshima K. J. Am. Chem. Soc.  2008,  130:  11276 
  • 5j Kawatsura M. Komatsu Y. Yamamoto M. Hayase S. Itoh T. Tetrahedron  2008,  64:  3488 
  • 5k Shirakawa E. Imazaki Y. Hayashi T. Chem. Lett.  2008,  37:  654 
  • 5l Korn TJ. Knochel P. Angew. Chem. Int. Ed.  2005,  44:  2947 
  • 6 Buriez O. Nédélec J.-Y. Périchon J. J. Electroanal. Chem.  2001,  506:  162 
  • The same effect have been reported in palladium catalysis:
  • 7a Amatore C. Carré E. Jutand A. Medjour Y. Organometallics  2002,  21:  4540 
  • 7b Amatore C. Bensalem S. Ghalem S. Jutand A. Medjour Y.
    Eur. J. Org. Chem.  2004,  366 
  • 9a Alexakis A. Berlan J. Besace Y. Tetrahedron Lett.  1986,  27:  1047 
  • 9b Yuguchi M. Tokuda M. Orito K.
    J. Org. Chem.  2004,  69:  908 
  • 9c Amatore C. Jutand A. Acc. Chem. Res.  2000,  33:  314 
  • 9d Amatore C. Azzabi M. Jutand A. J. Am. Chem. Soc.  1991,  113:  8375 
  • 9e Negishi E.-I. Takahashi T. Akiyoshi K. J. Chem. Soc., Chem. Commun.  1986,  1338 
  • 9f Scott WJ. Stille JK.
    J. Am. Chem. Soc.  1986,  108:  3033 
  • 11a Goudie AC. Gaster LM. Lake AW. Rose CJ. Freeman PC. Hughes BO. Miller D. J. Med. Chem.  1978,  21:  1260 
  • 11b Valero M. Costa SMB. Santos MA. J. Photochem. Photobiol A: Chem.  2000,  132:  67 
8

Under the conditions in Table  [¹] , in the absence of water, slow formation of ArZnX was detected by GLC analysis after iodolysis. In presence of water, no ArZnX is observable.

10

General Procedure for Conjugate Addition of Aryl Halides or Triflates onto MVK A flask was charged with aryl halide or triflate (7.5 mmol), LiBr (7.5 mmol, 651 mg), zinc powder (15 mmol, 981 mg), DMF (9 mL), and pyridine (2 mL). A solution of CoBr2 (20 mol%, 1.5 mmol, 328 mg), 2,2′-bipyridine (20 mol%, 1.5 mmol, 234 mg), MVK (1.1 equiv, 8 mmol) and H2O (0.5 equiv, 3.75 mmol, 68 µL) in DMF (10 mL), first stirred at r.t. for 10 min, was added dropwise to the resulting solution (ArX, LiBr, Zn in DMF-pyridine) stirred at 80 ˚C or 110 ˚C. After addition, the amount of the corresponding coupling product was measured by GC using an internal reference (dodecane, 200 µL). The reaction mixture was poured into a soln of 2 N HCl and extracted with Et2O or CH2Cl2. The organic layer was washed with a sat. soln of NaCl and dried over MgSO4. Evaporation of solvent and purification by column chromatography on SiO2 (pentane- Et2O) afforded the conjugate adducts characterized by NMR (¹H, ¹³C, ¹9F) and mass spectrometry.