Subscribe to RSS
DOI: 10.1055/a-2550-1878
Visible-Light-Induced Hydrogen-Atom-Transfer Catalysis for the Regioselective Hydroacylation of N-Sulfonylimine Esters with Aldehydes
We thank the National Natural Science Foundation of China (grants nos. 22371237 and 22071209), the National Youth Talent Support Program, and the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University (No. 2024Y01).

Abstract
The hydroacylation of unsaturated π-systems with aldehydes offers a direct and atom-economical route for introducing both a hydrogen atom and an acyl group into an organic molecule. Whereas hydroacylation reactions with alkanes and alkenes are well established, transformations involving imines have been much less successful. Existing approaches often favor C–C bond formation over C–N bond formation, due to the inherent properties of imines and acyl radicals. We present a photochemical approach that specifically targets N-sulfonylimine esters in combination with aldehydes. This reaction is facilitated by a decatungstate-salt-mediated double hydrogen-atom-transfer (HAT) activation that uniquely promotes the formation of C–N bonds under mild and simple conditions. Our method permits the efficient synthesis of a broad spectrum of distinctive N-sulfonyl N-carbonyl amide products with exclusive regioselectivity. We expect this streamlined method to expand the synthetic toolkit available for constructing complex nitrogen-containing compounds.
Key words
visible light - photocatalysis - hydrogen atom transfer - hydroacylation - imines - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2550-1878.
- Supporting Information
- CIF File
Publication History
Received: 11 February 2025
Accepted after revision: 03 March 2025
Accepted Manuscript online:
03 March 2025
Article published online:
10 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Ghosh A, Johnson KF, Vickerman KL, Walker JA, Stanley LM. Org. Chem. Front. 2016; 3: 639
- 1b Whyte A, Bajohr J, Torelli A, Lautens M. Angew. Chem. Int. Ed. 2020; 59: 16409
- 1c Jhuang H.-S, Reddy DM, Chen T.-H, Lee C.-F. Asian J. Org. Chem. 2016; 5: 1452
- 2a Chen Q.-A, Kim DK, Dong VM. J. Am. Chem. Soc. 2014; 136: 3772
- 2b Jun C.-H, Lee D.-Y, Lee H, Hong J.-B. Angew. Chem. Int. Ed. 2000; 39: 3070
- 2c Wu J, Gao W.-X, Huang X.-B, Zhou Y.-B, Liu M.-C, Wu H.-Y. Org. Chem. Front. 2021; 8: 6048
- 2d Leung JC, Krische MJ. Chem. Sci. 2012; 3: 2202
- 3a von Delius M, Le CM, Dong VM. J. Am. Chem. Soc. 2012; 134: 15022
- 3b Coxon TJ, Fernández M, Barwick-Silk J, McKay AI, Britton LE, Weller AS, Willis MC. J. Am. Chem. Soc. 2017; 139: 10142
- 3c Zhang H.-J, Bolm C. Org. Lett. 2011; 13: 3900
- 3d Murphy SK, Bruch A, Dong VM. Chem. Sci. 2015; 6: 174
- 4a Liu H, Xue F, Wang M, Tang X, Wu J. Synlett 2020; 32: 406
- 4b Voutyritsa E, Kokotos CG. Angew. Chem. Int. Ed. 2020; 59: 1735
- 4c Biswas S, Chandu P, Garai S, Sureshkumar D. Org. Lett. 2023; 25: 7863
- 4d Zhang M, Ruzi R, Xi J, Li N, Wu Z, Li W, Yu S, Zhu C. Org. Lett. 2017; 19: 3430
- 4e Fan P, Zhang C, Lan Y, Lin Z, Zhang L, Wang C. Chem. Commun. 2019; 55: 12691
- 4f Zhao X, Li B, Xia W. Org. Lett. 2020; 22: 1056
- 4g Zheng L, Xia P.-J, Zhao Q.-L, Qian Y.-E, Jiang W.-N, Xiang H.-Y, Yang H. J. Org. Chem. 2020; 85: 11989
- 4h Zhang L, Chen S, He H, Li W, Zhu C, Xie J. Chem. Commun. 2021; 57: 9064
- 4i Pálvölgyi ÁM, Ehrschwendtner F, Schnürch M, Bica-Schröder K. Org. Biomol. Chem. 2022; 20: 7245
- 4j Tao X, Wang Q, Kong L, Ni S, Pan Y, Wang Y. ACS Catal. 2022; 12: 15241
- 4k Saga Y, Nakayama Y, Watanabe T, Kondo M, Masaoka S. Org. Lett. 2023; 25: 1136
- 4l Takekawa Y, Nakagawa M, Nagao K, Ohmiya H. Chem. Eur. J. 2023; 29: e202301484
- 5a Murugesan V, Muralidharan A, Anantharaj GV, Chinnusamy T, Rasappan R. Org. Lett. 2022; 24: 8435
- 5b Yang J, Song M, Zhou H, Wang G, Ma B, Qi Y, Huo C. Org. Lett. 2020; 22: 8407
- 6a Koutoulogenis GS, Kokotou MG, Voutyritsa E, Limnios D, Kokotos CG. Org. Lett. 2017; 19: 1760
- 6b Stini NA, Poursaitidis ET, Nikitas NF, Kartsinis M, Spiliopoulou N, Ananida-Dasenaki P, Kokotos CG. Org. Biomol. Chem. 2023; 21: 1284
- 6c Liu L, Wang J, Feng X, Xu K, Liu W, Peng X, Du H, Tan J. Chin. J. Chem. 2024; 42: 1230
- 6d Li Q, Chen J, Luo Y, Xia Y. Org. Lett. 2024; 26: 1517
- 7 Mistry P, Das S, Patra R, Chatterjee I. Org. Chem. Front. 2024; 11: 6778
- 8 Zhang H.-H, Yu S. Org. Lett. 2019; 21: 3711
- 9 Zhong Z, Wu H, Chen X, Luo Y, Yang L, Feng X, Liu X. J. Am. Chem. Soc. 2024; 146: 20401
- 10 Liu M.-S, Shu W. ACS Catal. 2020; 10: 12960
- 11a Li Y, Lei M, Gong L. Nat. Catal. 2019; 2: 1016
- 11b Chi Z, Liao J.-B, Cheng X, Ye Z, Yuan W, Lin Y.-M, Gong L. J. Am. Chem. Soc. 2024; 146: 10857
- 11c Yang F, Chi L, Ye Z, Gong L. J. Am. Chem. Soc. 2025; 147: 1767
- 11d Li Q.-Y, Cheng S, Ye Z, Huang T, Yang F, Lin Y.-M, Gong L. Nat. Commun. 2023; 14: 6366
- 11e Huang T, Du P, Cheng X, Lin Y.-M. J. Am. Chem. Soc. 2024; 146: 24515
- 11f Huang H, Jiang Y, Yuan W, Lin Y.-M. Angew. Chem. Int. Ed. 2024; 63: e202409653
- 11g Ye Z, Yu Y, Lin Y.-M, Chen Y, Song S, Gong L. Nat. Synth. 2023; 2: 766
- 11h Gong L. Nat. Synth. 2022; 1: 915
- 12a Liu Z, D’Amico F, Martin R. J. Am. Chem. Soc. 2024; 146: 28624
- 12b Chen J, Tan C, Rodrigalvarez J, Zhang S, Martin R. Angew. Chem. Int. Ed. 2024; 63: e202406485
- 12c Zhou W, Dmitriev IA, Melchiorre P. J. Am. Chem. Soc. 2023; 145: 25098
- 12d Finis DS, Nicewicz DA. J. Am. Chem. Soc. 2024; 146: 16830
- 12e Schlegel M, Qian S, Nicewicz DA. ACS Catal. 2022; 12: 10499
- 12f Xu Z, Fu L, Fang X, Huang B, Zhou L, Wan J.-P. Org. Lett. 2021; 23: 5049
- 12g Yan X, Pang Y, Zhou Y, Chang R, Ye J. J. Am. Chem. Soc. 2025; 147: 1186
- 12h Kikuchi T, Yamada K, Yasui T, Yamamoto Y. Org. Lett. 2021; 23: 4710
- 12i Xie H, Breit B. Org. Lett. 2024; 26: 4438
-
13 CCDC 2412678 contains the supplementary crystallographic data for compound 33. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 14 Buettner GR. Free Radical Biol. Med. 1987; 3: 259
- 15 Dong J, Wang X, Wang Z, Song H, Liu Y, Wang Q. Chem. Sci. 2020; 11: 1026
-
16
Ethyl 2-Benzoyl-2,3-dihydro-1,2-benzisothiazole-3-carboxylate 1,1-Dioxide (3); Typical Procedure
A dried Schlenk tube (10 mL) was charged with the N-sulfonylimine ester 1a (23.9 mg, 0.10 mmol), PhCHO (2a; 21.2 mg, 0.20 mmol), TBADT (6.6 mg, 0.0020 mmol), Na2CO3 (10.6 mg, 0.10 mmol), and MeCN (1.0 mL). The mixture was then degassed with argon through three freeze–pump–thaw cycles. The Schlenk tube was positioned approximately 4 cm from a 50 W lamp, and the mixture was stirred at 25 °C for 24 h. The resulting mixture was then purified by flash column chromatography [silica gel, PE–EtOAc (4:1)] to give a white solid; yield: 30.0 mg (0.087 mmol, 87%).
1H NMR (400 MHz, CDCl3): δ = 7.84 (d, J = 8.1 Hz, 2 H), 7.78–7.63 (m, 3 H), 7.56 (q, J = 7.5 Hz, 2 H), 7.45 (t, J = 7.6 Hz, 2 H), 6.13 (s, 1 H), 4.32–4.14 (m, 2 H), 1.25 (t, J = 7.1 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 168.32, 166.39, 134.32, 134.20, 133.59, 132.57, 130.76, 128.71, 128.41, 128.36, 125.38, 62.96, 59.86, 14.04. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C17H15NNaO5S: 368.0563; found: 368.0567.