Subscribe to RSS
DOI: 10.1055/a-2539-5043
Nickel-Catalyzed Cross-Electrophile Coupling Reactions of Alcohols and Their Derivatives
The authors thank the Department of Science and Technology, Science and Engineering Research Board (DST-SERB) (SCP/2022/000352) for financial support. S.K.J. thanks the Ministry of Education, India for a Prime Minister’s Research Fellowship (PMRF).

Abstract
Nickel-catalyzed cross-electrophile coupling of halide coupling partners has emerged as a powerful tool for constructing C–C bonds under mild conditions. However, the limited availability of halide coupling partners means that a significant portion must be synthetically prepared, which can pose sustainability challenges. In this context, aryl and alkyl alcohols represent highly promising alternative coupling partners due to their abundance and versatility. Despite their potential, the application of alcohols in cross-electrophile coupling reactions is mostly explored in couplings with aryl or alkyl halide derivatives. Cross-coupling reactions in which both coupling partners are alcohols or derivatives remained underexplored until recent advancements. This short review aims to highlight the current progress in nickel-catalyzed cross-electrophile coupling of alcohols and their derivatives, and discusses future opportunities in this burgeoning field.
1 Introduction
2 Nickel-Catalyzed Cross-Electrophile Coupling Using Alcohols or Alcohol Derivatives
2.1 C(sp3)–C(sp3) Cross-Coupling
2.2 C(sp2)–C(sp3) Cross-Coupling
2.3 C(sp2)–C(sp2) Cross-Coupling
3 Cross-Coupling Reactions of Alcohols via Hydrogen Transfer Reactions
4 Summary and Outlook
Key words
nickel catalysis - cross-electrophile coupling - alcohol coupling partners - cross selectivity - sustainable approach - naturally abundantPublication History
Received: 18 December 2024
Accepted after revision: 14 February 2025
Accepted Manuscript online:
14 February 2025
Article published online:
28 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 2a Deraedt C, Astruc D. Acc. Chem. Res. 2014; 47: 494
- 2b Gildner PG, Colacot TJ. Organometallics 2015; 34: 5497
- 2c He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 3a Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 1: 0025
- 3b Chernyshev VM, Ananikov VP. ACS Catal. 2022; 12: 1180
- 3c Strömberg S, Zetterberg K, Siegbahn PE. M. J. Chem. Soc., Dalton Trans. 1997; 4147
- 4 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 5a Giovannini R, Knochel P. J. Am. Chem. Soc. 1998; 120: 11186
- 5b Jensen AE, Dohle W, Knochel P. Tetrahedron 2000; 56: 4197
- 5c Walter IA. S. Tetrahedron Lett. 2006; 47: 341
- 5d Lipshutz BH, Blomgren PA. J. Am. Chem. Soc. 1999; 121: 5819
- 5e Melzig L, Gavryushin A, Knochel P. Org. Lett. 2007; 9: 5529
- 5f Giovannini R, Stüdemann T, Devasagayaraj A, Dussin G, Knochel P. J. Org. Chem. 1999; 64: 3544
- 5g Zhou J, Fu GC. J. Am. Chem. Soc. 2003; 125: 14726
- 5h Fischer C, Fu GC. J. Am. Chem. Soc. 2005; 127: 4594
- 5i Son S, Fu GC. J. Am. Chem. Soc. 2008; 130: 2756
- 6a Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 6b Taylor BL. H, Swift EC, Waetzig JD, Jarvo ER. J. Am. Chem. Soc. 2011; 133: 389
- 6c Greene MA, Yonova IM, Williams FJ, Jarvo ER. Org. Lett. 2012; 14: 4293
- 6d Taylor BL. H, Harris MR, Jarvo ER. Angew. Chem. Int. Ed. 2012; 51: 7790
- 6e Zhou Q, Srinivas HD, Dasgupta S, Watson MP. J. Am. Chem. Soc. 2013; 135: 3307
- 6f Srinivas HD, Zhou Q, Watson MP. Org. Lett. 2014; 16: 3596
- 6g Xu J, Bercher OP, Watson MP. J. Am. Chem. Soc. 2021; 143: 8608
- 6h Zhou Q, Srinivas HD, Zhang S, Watson MP. J. Am. Chem. Soc. 2016; 138: 11989
- 6i Herbert CA, Jarvo ER. Acc. Chem. Res. 2023; 56: 3313
- 7a Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 7b Ehehalt LE, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Chem. Rev. 2024; 124: 13397
- 8a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 8b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 9a Chen L.-M, Shin C, DeLano TJ, Carretero-Cerdán A, Gheibi G, Reisman SE. J. Am. Chem. Soc. 2024; 146: 29523
- 9b Turro RF, Wahlman JL. H, Tong ZJ, Chen X, Yang M, Chen EP, Hong X, Hadt RG, Houk KN, Yang Y.-F, Reisman SE. J. Am. Chem. Soc. 2023; 145: 14705
- 9c Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
- 9d Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
- 9e Poremba KE, Kadunce NT, Suzuki N, Cherney AH, Reisman SE. J. Am. Chem. Soc. 2017; 139: 5684
- 9f Hofstra JL, Cherney AH, Ordner CM, Reisman SE. J. Am. Chem. Soc. 2018; 140: 139
- 9g Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2015; 137: 10480
- 9h Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 9i Lacker CR, DeLano TJ, Chen EP, Kong J, Belyk KM, Piou T, Reisman SE. J. Am. Chem. Soc. 2022; 144: 20190
- 9j DeLano TJ, Dibrell SE, Lacker CR, Pancoast AR, Poremba KE, Cleary L, Sigman MS, Reisman SE. Chem. Sci. 2021; 12: 7758
- 9k Qiu C, Chen Q, Gong H. ACS Catal. 2024; 14: 12192
- 9l Wang J, Gong Y, Sun D, Gong H. Org. Chem. Front. 2021; 8: 2944
- 9m Lin Q, Gong H, Wu F. Org. Lett. 2022; 24: 8996
- 9n Sha Y, Liu J, Wang L, Liang D, Wu D, Gong H. Org. Biomol. Chem. 2021; 19: 4887
- 9o Liu J, Ren Q, Zhang X, Gong H. Angew. Chem. Int. Ed. 2016; 55: 15544
- 9p Wang X, Wang S, Xue W, Gong H. J. Am. Chem. Soc. 2015; 137: 11562
- 9q Liang Z, Xue W, Lin K, Gong H. Org. Lett. 2014; 16: 5620
- 9r Cardinale L, Beutner GL, Bemis CY, Weix DJ, Stahl SS. J. Am. Chem. Soc. 2024; 146: 32249
- 9s Mouat JM, Widness JK, Enny DG, Meidenbauer MT, Awan F, Krauss TD, Weix DJ. ACS Catal. 2023; 13: 9018
- 9t Franke MC, Longley VR, Rafiee M, Stahl SS, Hansen EC, Weix DJ. ACS Catal. 2022; 12: 12617
- 9u Kim S, Goldfogel MJ, Gilbert MM, Weix DJ. J. Am. Chem. Soc. 2020; 142: 9902
- 9v Perkins RJ, Hughes AJ, Weix DJ, Hansen EC. Org. Process Rev. Dev. 2019; 23: 1746
- 9w Hansen EC, Li C, Yang S, Pedro D, Weix DJ. J. Org. Chem. 2017; 82: 7085
- 9x Johnson KA, Biswas S, Weix DJ. Chem. Eur. J. 2016; 22: 7399
- 9y Smith RT, Zhang X, Rincón JA, Agejas J, Mateos C, Barberis M, García-Cerrada S, de Frutos O, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 17433
- 9z Bacauanu V, Cardinal S, Yamauchi M, Kondo M, Fernández DF, Remy R, MacMillan DW. C. Angew. Chem. Int. Ed. 2018; 57: 12543
- 9aa Chen TQ, MacMillan DW. C. Angew. Chem. Int. Ed. 2019; 58: 14584
- 9ab Sakai HA, Liu W, Le CC, MacMillan DW. C. J. Am. Chem. Soc. 2020; 142: 11691
- 9ac Dow NW, Cabré A, MacMillan DW. C. Chem 2021; 7: 1827
- 9ad Wei X.-X, Zhao Z.-Z, Pang X, Shu X.-Z. Org. Lett. 2024; 26: 6125
- 10a Ertl P, Schuhmann T. J. Nat. Prod. 2019; 82: 1258
- 10b Lin Q, Ma G, Gong H. ACS Catal. 2021; 11: 14102
- 10c Twilton J, Christensen M, DiRocco DA, Ruck RT, Davies IW, MacMillan DW. C. Angew. Chem. Int. Ed. 2018; 57: 5369
- 11 Cook A, Newman SG. Chem. Rev. 2024; 124: 6078
- 12 Cheng L, Lin Q, Chen Y, Gong H. Synthesis 2022; 54: 4426
- 13a Yu X, Yang T, Wang S, Xu H, Gong H. Org. Lett. 2011; 13: 2138
- 13b Xu H, Zhao C, Qian Q, Deng W, Gong H. Chem. Sci. 2013; 4: 4022
- 13c Sheng J, Ni H.-Q, Ni S.-X, He Y, Cui R, Liao G.-X, Bian K.-J, Wu B.-B, Wang X.-S. Angew. Chem. Int. Ed. 2021; 60: 15020
- 13d Ibrahim MY. S, Cumming GR, Gonzalez de Vega R, Garcia-Losada P, de Frutos O, Kappe CO, Cantillo D. J. Am. Chem. Soc. 2023; 145: 17023
- 13e Zhou J, Wang D, Xu W, Hu Z, Xu T. J. Am. Chem. Soc. 2023; 145: 2081
- 13f Kang K, Weix DJ. Org. Lett. 2022; 24: 2853
- 13g Yang T, Wei Y, Koh MJ. ACS Catal. 2021; 11: 6519
- 13h Komeyama K, Michiyuki T, Osaka I. ACS Catal. 2019; 9: 9285
- 13i Li P, Zhu Z, Guo C, Kou G, Wang S, Xie P, Ma D, Feng T, Wang Y, Qiu Y. Nat. Catal. 2024; 7: 412
- 13j Kranidiotis-Hisatomi N, Yi H, Oestreich M. Angew. Chem. Int. Ed. 2021; 60: 13652
- 13k Xu Y, Zhang M, Oestreich M. ACS Catal. 2022; 12: 10546
- 13l Konev MO, Hanna LE, Jarvo ER. Angew. Chem. Int. Ed. 2016; 55: 6730
- 14 Mann JB, Meek TL, Knight ET, Capitani JF, Allen LC. J. Am. Chem. Soc. 2000; 122: 5132
- 15 Diccianni JB, Katigbak J, Hu C, Diao T. J. Am. Chem. Soc. 2019; 141: 1788
- 16 Sanford AB, Thane TA, McGinnis TM, Chen P.-P, Hong X, Jarvo ER. J. Am. Chem. Soc. 2020; 142: 5017
- 17 Jana SK, Maiti M, Dey P, Maji B. Org. Lett. 2022; 24: 1298
- 18 Li Z, Sun H.-M, Shen Q. Org. Biomol. Chem. 2016; 14: 3314
- 19 Lin PC, Wong CD, Jarvo ER. Angew. Chem. Int. Ed. 2024; 63: e202403119
- 20 Tercenio QD, Alexanian EJ. Org. Lett. 2021; 23: 7215
- 21 Gan Y, Hu H, Liu Y. Org. Lett. 2020; 22: 4418
- 22 Chen R, Intermaggio NE, Xie J, Rossi-Ashton JA, Gould CA, Martin RT, Alcázar J, MacMillan DW. C. Science 2024; 383: 1350
- 23a Jia C.-Y, Li J.-Y, Hao G.-F, Yang G.-F. Drug Discovery Today 2020; 25: 248
- 23b Meyers J, Carter M, Mok NY, Brown N. Future Med. Chem. 2016; 8: 1753
- 23c Talele TT. J. Med. Chem. 2020; 63: 13291
- 23d Fujii S, Chang SY, Burke MD. Angew. Chem. Int. Ed. 2011; 50: 7862
- 23e Luo L, Zhai X.-Y, Wang Y.-W, Peng Y, Gong H. Chem. Eur. J. 2019; 25: 989
- 23f Cheng H.-G, Yang Z, Chen R, Cao L, Tong W.-Y, Wei Q, Wang Q, Wu C, Qu S, Zhou Q. Angew. Chem. Int. Ed. 2021; 60: 5141
- 24 Netherton MR, Fu GC. Adv. Synth. Catal. 2004; 346: 1525
- 25 Tobisu M, Chatani N. Top. Curr. Chem. 2016; 374: 41
- 26a Cui X, Wang S, Zhang Y, Deng W, Qian Q, Gong H. Org. Biomol. Chem. 2013; 11: 3094
- 26b Vara BA, Patel NR, Molander GA. ACS Catal. 2017; 7: 3955
- 26c Ackerman LK. G, Anka-Lufford LL, Naodovic M, Weix DJ. Chem. Sci. 2015; 6: 1115
- 26d Arendt KM, Doyle AG. Angew. Chem. Int. Ed. 2015; 54: 9876
- 26e Suga T, Ukaji Y. Org. Lett. 2018; 20: 7846
- 26f Jia X.-G, Guo P, Duan J, Shu X.-Z. Chem. Sci. 2018; 9: 640
- 26g Rackl D, Kais V, Lutsker E, Reiser O. Eur. J. Org. Chem. 2017; 2130
- 27 Wang J, Zhao J, Gong H. Chem. Commun. 2017; 53: 10180
- 28 Duan J, Du Y.-F, Pang X, Shu X.-Z. Chem. Sci. 2019; 10: 8706
- 29 Guo P, Wang K, Jin W.-J, Xie H, Qi L, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 513
- 30 Peng X, Huang J, Han G.-Y, Shu X.-Z. Org. Chem. Front. 2024; 11: 94
- 31 Jana SK, Bhattacharya R, Dey P, Chakraborty S, Maji B. ACS Catal. 2024; 14: 14172
- 32 Verheyen T, van Turnhout L, Vandavasi JK, Isbrandt ES, De Borggraeve WM, Newman SG. J. Am. Chem. Soc. 2019; 141: 6869
- 33 Wang X, Liu F, Yan Z, Qiang Q, Huang W, Rong Z.-Q. ACS Catal. 2021; 11: 7319
- 34a Yuan S, Chang J, Yu B. Top. Curr. Chem. 2020; 378: 23
- 34b Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
- 34c Kantham S, Chan S, McColl G, Miles JA, Veliyath SK, Deora GS, Dighe SN, Khabbazi S, Parat M.-O, Ross BP. ACS Chem. Neurosci. 2017; 8: 1901
- 34d Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
- 34e Yadav DK, Bharitkar YP, Hazra A, Pal U, Verma S, Jana S, Singh UP, Maiti NC, Mondal NB, Swarnakar S. J. Nat. Prod. 2017; 80: 1347
- 34f Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
- 34g Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 34h Bringmann G, Walter R, Weirich R. Angew. Chem. Int. Ed. 1990; 29: 977
- 34i Yu B, Shi X.-J, Zheng Y.-F, Fang Y, Zhang E, Yu D.-Q, Liu H.-M. Eur. J. Med. Chem. 2013; 69: 323
- 35a Littke AF, Dai C, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
- 35b Han J, Liu Y, Guo R. J. Am. Chem. Soc. 2009; 131: 2060
- 35c Hatakeyama T, Nakamura M. J. Am. Chem. Soc. 2007; 129: 9844
- 35d Hong K, Morken JP. J. Org. Chem. 2011; 76: 9102
- 35e Hua X, Masson-Makdissi J, Sullivan RJ, Newman SG. Org. Lett. 2016; 18: 5312
- 35f Zhu F, Wang Z.-X. J. Org. Chem. 2014; 79: 4285
- 36a Amatore M, Gosmini C. Angew. Chem. Int. Ed. 2008; 47: 2089
- 36b Gosmini C, Bassene-Ernst C, Durandetti M. Tetrahedron 2009; 65: 6141
- 36c Huang L, Ackerman LK. G, Kang K, Parsons AM, Weix DJ. J. Am. Chem. Soc. 2019; 141: 10978
- 36d Nohira I, Chatani N. ACS Catal. 2021; 11: 4644
- 36e Dewanji A, Bülow RF, Rueping M. Org. Lett. 2020; 22: 1611
- 36f Sengmany S, Léonel E, Polissaint F, Nédélec J.-Y, Pipelier M, Thobie-Gautier C, Dubreuil D. J. Org. Chem. 2007; 72: 5631
- 36g Oliveira JL, Silva MJ, Florêncio T, Urgin K, Sengmany S, Léonel E, Nédélec J.-Y, Navarro M. Tetrahedron 2012; 68: 2383
- 36h Sengmany S, Vitu-Thiebaud A, Le Gall E, Condon S, Léonel E, Thobie-Gautier C, Pipelier M, Lebreton J, Dubreuil D. J. Org. Chem. 2013; 78: 370
- 36i Sengmany S, Vasseur S, Lajnef A, Le Gall E, Léonel E. Eur. J. Org. Chem. 2016; 4865
- 37 Ackerman LK. G, Lovell MM, Weix DJ. Nature 2015; 524: 454
- 38 Kang K, Huang L, Weix DJ. J. Am. Chem. Soc. 2020; 142: 10634
- 39a Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
- 39b Gunanathan C, Milstein D. Science 2013; 341: 1229712
- 39c Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
- 39d Reed-Berendt BG, Latham DE, Dambatta MB, Morrill LC. ACS Cent. Sci. 2021; 7: 570
- 40a Waiba S, Maji B. ChemCatChem 2020; 12: 1891
- 40b Das K, Waiba S, Jana A, Maji B. Chem. Soc. Rev. 2022; 51: 4386
- 41 Zhang M.-J, Li H.-X, Young DJ, Li H.-Y, Lang J.-P. Org. Biomol. Chem. 2019; 17: 3567
- 42 Babu R, Subaramanian M, Midya SP, Balaraman E. Org. Lett. 2021; 23: 3320
- 43 Bains AK, Biswas A, Adhikari D. Adv. Synth. Catal. 2022; 364: 47
- 44 Bansal S, Punji B. Chem. Eur. J. 2024; 30: e202304082