Subscribe to RSS
DOI: 10.1055/a-2508-9744
Aggregation-Induced Electrochemical Boronation–Dihydroxylation of Alkenes
We are grateful for financial support from the National Natural Science Foundation of China (grant nos. 22071105, 22031008, and 22471125 for X.C.). This work is supported by the Elite Student Development Program for Fundamental Disciplines 2.0 (20221021).

Abstract
Electrochemical organic synthesis is typically conducted in a homogenous solution to facilitate mass transfer at the electrode. Therefore, aggregation is unfavorable and unexplored in electrochemical organic synthesis. In this report, we demonstrate the aggregation-induced boronation–dihydroxylation reaction of alkenes with boronic acids in full water media. The alkene aggregates at the lipophilic anode with the surface tension of water as the driving force, shielding boronic acid away from the anode. In this well-defined diffusion model, the boronation–dihydroxylation reaction occurs with high conversion, providing unique chemoselectivity.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2508-9744.
- Supporting Information
Publication History
Received: 25 October 2024
Accepted after revision: 30 December 2024
Accepted Manuscript online:
30 December 2024
Article published online:
17 February 2025
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Prasad JS, Vu T, Totleben MJ, Crispino GA, Kacsur DJ, Swaminathan S, Thornton JE, Fritz A, Singh AK. Org. Process Res. Dev. 2003; 7: 821
- 1b Xia X, Song S, Wen Y, Qi J, Cao L, Liu X, Zhou R, Zhao H. Biomater. Sci. 2023; 11: 3092
- 2 Mushtaq A, Zahoor AF, Bilal M, Hussain SM, Irfan M, Akhtar R, Irfan A, Kotwica-Mojzych K, Mojzych M. Molecules 2023; 28: 2722
- 3a Tse MK, Schröder K, Beller M. Recent Developments in Metal-Catalyzed Dihydroxylation of Alkenes . In Modern Oxidation Methods, 2nd ed. Bäckvall J.-E. Wiley-VCH; Weinheim: 2010. Chap. 1
- 3b Srour H, Le Maux P, Chevance S, Simonneaux G. Coord. Chem. Rev. 2013; 257: 3030
- 3c Chen J, Luo X, Sun Y, Si S, Xu Y, Lee Y.-M, Nam W, Wang B. CCS Chem. 2022; 4: 2369
- 4a Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 4b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 4c Ma C, Fang P, Liu Z.-R, Xu S.-S, Xu K, Cheng X, Lei A, Xu H.-C, Zeng C, Mei T.-S. Sci. Bull. 2021; 66: 2412
- 4d Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
- 4e Jiao KJ, Gao XT, Ma C, Fang P, Mei TS. Isr. J. Chem. 2023
- 4f Li YJ, Dana S, Ackermann L. Curr. Opin. Electrochem. 2023; 40: 101312
- 4g Yang ZL, Shi WY, Alhumade H, Yi H, Lei AW. Nat. Synth. 2023; 2: 217
- 4h Mei H, Yin Z, Liu J, Sun H, Han J. Chin. J. Chem. 2019; 37: 292
- 4i Qu P, Jiang Y.-Q, Wang Y.-H, Liu G.-Q. Green Chem. 2023; 25: 7485
- 4j Zheng Y, Lu W, Chen C, Lu Y, Huang S. Org. Chem. Front. 2024; 11: 5306
- 4k Vanhoof JR, De Smedt PJ, Derhaeg J, Ameloot R, De Vos DE. Angew. Chem. Int. Ed. 2023; 62: e202311539
- 5a Amundsen AR, Balko EN. J. Appl. Electrochem. 1992; 22: 810
- 5b Torii S, Liu P, Bhuvaneswari N, Amatore C, Jutand A. J. Org. Chem. 1996; 61: 3055
- 6 Chung DS, Park SH, Lee S.-g, Kim H. Chem. Sci. 2021; 12: 5892
- 7 Liu M, Feng T, Wang Y, Kou G, Wang Q, Wang Q, Qiu Y. Nat. Commun. 2023; 14: 6467
- 8 Pan T, Shao Z, Xue M, Li Y, Zhao L, Zhang Y. Org. Lett. 2024; 26: 8884
- 9 Li M, Cheng X. Isr. J. Chem. 2023; e202300067
- 10 Li M, Cheng X. Nat. Commun. 2024; 15: 7540