Subscribe to RSS
DOI: 10.1055/a-2503-3181
Lewis Acid Catalyzed Regioselective Substitution of 2-Indolylmethanols with Pyrroles
We are grateful for financial support from the National Natural Science Foundation of China (NSFC, 22125104 and 22101103), Science Fund for Distinguished Young Scholars of Jiangsu Province (BK20240052), Program for Jiangsu Provincial Excellent Scientific and Technological Innovation Team, Undergraduate Students Project of Jiangsu Province (202310320039Z), and Technology Development Fund of the Affiliated Hospital of Xuzhou Medical University (XYFY202230).

Abstract
A Lewis acid catalyzed regioselective C2′-electrophilic substitution of 2-indolylmethanols with pyrroles has been established, which affords indole-based tetraarylmethanes in overall high yields (up to 99%) with excellent regioselectivities. Moreover, such indole-based tetraarylmethanes exhibit potent cytotoxicity against HepG2 cancer cells, which demonstrates their potential applications in medicinal chemistry. This reaction not only represents the regioselective C2′-electrophilic substitution of 2-indolylmethanols with aryl nucleophiles (Ar-Nu), but also provides a new strategy for the synthesis of biologically important tetraarylmethanes.
Key words
indolylmethanols - pyrroles - electrophilic substitution - Lewis acids - tetraarylmethanes - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2503-3181.
- Supporting Information
- CIF File
Publication History
Received: 25 October 2024
Accepted after revision: 16 December 2024
Accepted Manuscript online:
16 December 2024
Article published online:
27 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 1b Wan Y, Li Y, Yan C, Yan M, Tang Z. Eur. J. Med. Chem. 2019; 183: 111691
- 2a Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
- 2b Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
- 2c Sheng F.-T, Wang J.-Y, Tan W, Zhang Y.-C, Shi F. Org. Chem. Front. 2020; 7: 3967
- 2d Tu M.-S, Chen K.-W, Wu P, Zhang Y.-C, Liu X.-Q, Shi F. Org. Chem. Front. 2021; 8: 2643
- 2e Zhang H.-H, Shi F. Acc. Chem. Res. 2022; 55: 2562
- 2f Tan W, Zhang J.-Y, Gao C.-H, Shi F. Sci. China: Chem. 2023; 66: 966
- 2g Yang S, Wang N, Hang Q, Zhang Y, Shi F. Acta Chim. Sin. 2023; 81: 793
- 2h Wang H, Yang S, Zhang Y, Shi F. Chin. J. Org. Chem. 2023; 43: 974
- 3a Mei G.-J, Shi F. J. Org. Chem. 2017; 82: 7695
- 3b Dorsch C, Schneider C. Synthesis 2022; 54: 3125
- 3c Li X, Li Z, Sun J. Nat. Synth. 2022; 1: 426
- 3d Zhu Z.-Q, Li T.-Z, Liu S.-J, Shi F. Org. Chem. Front. 2024; 11: 5573
- 4a Petrini M. Adv. Synth. Catal. 2020; 362: 1214
- 4b Zhang H, Shi F. Chin. J. Org. Chem. 2022; 42: 3351
- 5a Li C, Zhang H.-H, Fan T, Shen Y, Wu Q, Shi F. Org. Biomol. Chem. 2016; 14: 6932
- 5b Zhang H.-H, Wang C.-S, Li C, Mei G.-J, Li Y, Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
- 5c Zhu Z.-Q, Shen Y, Liu J.-X, Tao J.-Y, Shi F. Org. Lett. 2017; 19: 1542
- 5d He Y.-Y, Sun X.-X, Li G.-H, Mei G.-J, Shi F. J. Org. Chem. 2017; 82: 2462
- 5e Ma C, Zhou J.-Y, Zhang Y.-Z, Jiao Y, Mei G.-J, Shi F. Chem. Asian J. 2018; 13: 2549
- 5f Zhou Y, Cao W.-B, Zhang L.-L, Xu X.-P, Ji S.-J. J. Org. Chem. 2018; 83: 6056
- 5g Xu M.-M, Wang H.-Q, Mao Y.-J, Mei G.-J, Wang S.-L, Shi F. J. Org. Chem. 2018; 83: 5027
- 6a Tang Z, Hong G, Hu C, Wang Q, Zhong Y, Gong Y, Yang P, Wang L. Org. Biomol. Chem. 2021; 19: 10337
- 6b Sheng F.-T, Yang S, Wu S.-F, Zhang Y.-C, Shi F. Chin. J. Chem. 2022; 40: 2151
- 6c Han Z, Zhuang H, Tang L, Zang Y, Guo W, Huang H, Sun J. Org. Lett. 2022; 24: 4246
- 7a Sun X.-X, Zhang H.-H, Li G.-H, He Y.-Y, Shi F. Chem. Eur. J. 2016; 22: 17526
- 7b Zhu Z.-Q, Shen Y, Sun X.-X, Tao J.-Y, Liu J.-X, Shi F. Adv. Synth. Catal. 2016; 358: 3797
- 7c Xu M.-M, Wang H.-Q, Wan Y, Wang S.-L, Shi F. J. Org. Chem. 2017; 82: 10226
- 7d Mao J, Zhang H, Ding X.-F, Luo X, Deng W.-P. J. Org. Chem. 2019; 84: 11186
- 7e Nawaz S, Huang Y, Bao X, Wei S, Wei X, Qu J, Wang B. Org. Biomol. Chem. 2021; 19: 8530
- 7f Li R, Zhang J, Sun M, Wang Z, Yang J. Org. Lett. 2024; 26: 4610
- 8a Zhu Z.-Q, Yu L, Sun M, Mei G.-J, Shi F. Adv. Synth. Catal. 2018; 360: 3109
- 8b Sun M, Ma C, Zhou S.-J, Lou S.-F, Xiao J, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 8703
- 8c Zhou S.-J, Sun M, Wang J.-Y, Yu X.-Y, Lu H, Zhang Y.-C, Shi F. Eur. J. Org. Chem. 2020; 4301
- 8d Li T.-Z, Liu S.-J, Sun Y.-W, Deng S, Tan W, Jiao Y, Zhang Y.-C, Shi F. Angew. Chem. Int. Ed. 2021; 60: 2355
- 8e Qin L.-Z, Cheng Y.-L, Wen X, Xu Q.-L, Zhen L. Tetrahedron 2021; 77: 131742
- 8f Yang S, Wang H.-Q, Gao J.-N, Tan W.-X, Zhang Y.-C, Shi F. Eur. J. Org. Chem. 2022; e202200878
- 8g Cheng Y.-L, Wu G, Zang Y.-J, Hu Y.-Y, Qin L.-Z, Wen X, Xu Q.-L. Org. Biomol. Chem. 2022; 20: 3930
- 9a Rui K, Gu H, Woldegiorgis AG, Lin X. Org. Lett. 2023; 25: 6654
- 9b Zhan S.-C, Sun J, Sun Q, Han Y, Yan C.-G. J. Org. Chem. 2023; 88: 5440
- 9c Singh G, Sharma S, Pandey R, Rekha, Anand RV. Org. Biomol. Chem. 2023; 21: 2493
- 9d Li T, Liu S, Wu S, Cheng Q, Chen Q, Jiao Y, Zhang Y, Shi F. Sci. China: Chem. 2024; 67: 92629
- 9e Lai B.-W, Qu S.-Y, Yin Y.-X, Li R, Dong K, Shi F. J. Org. Chem. 2024; 89: 10197
- 9f Wu T.-F, Fu Z.-J, Zhang Y.-R, Qiu Z.-W, Li BQ, Chen S.-S, Pan H.-P, Ma A.-J, Zhang X.-Z. Molecules 2024; 29: 1251
- 10a Li X, Duan M, Deng Z, Shao Q, Chen M, Zhu G, Houk KN, Sun J. Nat. Catal. 2020; 3: 1010
- 10b Nian C, Yu R, Han Z, Bai Y, Wang J, Sun J, Huang H. Chem. Commun. 2024; 60: 9797
- 11a Hu C, Hong G, He Y, Zhou C, Kozlowski MC, Wang L. J. Org. Chem. 2018; 83: 4739
- 11b Chen L, Zou Y.-X, Fang X.-Y, Wu J, Su X.-H. Org. Biomol. Chem. 2018; 16: 7417
- 11c Zhu S, Zhang Y, Luo J, Wang F, Cao X, Huang S. Green Chem. 2020; 22: 657
- 12a Zhong Y, Hong G, Tang Z, Yang P, Wang Q, Gong Y, Wang L. ChemistrySelect 2022; 7: e202200218
- 12b Chaudhari TY, Bisht S, Chorol S, Bhujbal SM, Bharatam PV, Tandon V. J. Org. Chem. 2023; 88: 10412
- 13a Zhou Y, Xu X.-P, Ji S.-J. Org. Lett. 2019; 21: 2039
- 13b Qiu Z.-W, Li BQ, Liu H.-F, Zhu Z.-Q, Pan H.-P, Feng N, Ma A.-J, Peng J.-B, Zhang X.-Z. J. Org. Chem. 2021; 86: 7490
- 13c Liu Y, Cao M, Zhang S, Wang Z, Dai X, Jiang X, Dong Y, Fu J. Org. Biomol. Chem. 2022; 20: 1510
- 13d Sun J, Yan C, Sun Q, Hana Y, Yan C.-G. New J. Chem. 2023; 47: 6694
- 13e Dong R, Han T.-J, Huang L, Mei G.-J. Org. Chem. Front. 2024; 11: 3624
- 13f Liu S.-J, Li T.-Z, Wang N.-Y, Cheng Q, Jiao Y, Zhang Y.-C, Shi F. Org. Chem. Front. 2024; 11: 4812
- 13g Zhu W.-R, Su Q, Deng X.-Y, Ouyang Z.-L, Weng J, Lu G. Org. Chem. Front. 2024; 11: 2040
- 13h Xu J, Rawal VH. J. Am. Chem. Soc. 2019; 141: 4820
- 14 For a review, see: Chen L, Huo J, Zhang J, Currano JN, Guan H, Walsh PJ, Mao J. Green Synth. Catal. 2023; 4: 273
- 15a Crowley PD, Gallagher HC. J. Appl. Microbiol. 2014; 117: 611
- 15b Tan X, Deng Z, Wang Q, Chen S, Zhu G, Sun J. Nat. Synth. 2023; 2: 275
- 16a Hang Q.-Q, Wu S.-F, Yang S, Wang X, Zhong Z, Zhang Y.-C, Shi F. Sci. China: Chem. 2022; 65: 1929
- 16b Yang S, Huang J.-B, Wang D.-H, Wang N.-Y, Chen Y.-Y, Ke X.-Y, Chen H, Ni S.-F, Zhang Y.-C, Shi F. Precis. Chem. 2024; 2: 208
- 16c Wang J.-Y, Gao C.-H, Ma C, Wu X.-Y, Ni S.-F, Tan W, Shi F. Angew. Chem. Int. Ed. 2024; 63: e202316454
- 16d Wu P, Zhang W.-T, Yang J.-X, Yu X.-Y, Ni S.-F, Tan W, Shi F. Angew. Chem. Int. Ed. 2024; 63: e202410581
- 17a Li X, Duan M, Yu P, Houk KN, Sun J. Nat. Commun. 2021; 12: 4881
- 17b Singh S, Hazra CK. Synthesis 2024; 56: 368
- 18 CCDC 2392854 (3ca) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures . Also see the Supporting Information
For some reviews, see:
For some reviews, see:
For some reviews, see:
For some reviews, see:
For some selected examples of C3-electrophilic substitutions, see:
For some recent examples of C3-electrophilic substitutions, see:
For C3-electrophilic cycloadditions, see:
For some selected examples of C3-nucleophilic cycloadditions, see:
For some recent examples of C3-nucleophilic cycloadditions, see:
For C2′-electrophilic substitutions with heteroatom-based nucleophiles, see:
For C2′-electrophilic substitutions with carbon-based nucleophiles, see:
For other reaction types, see:
For some selected examples, see:
For an example, see:
For a review, see: