Subscribe to RSS
DOI: 10.1055/a-2483-4654
Adipositas im Alter – Auswirkungen auf Kraft und -Funktion der Skelettmuskulatur
Obesity in old age – effects on skeletal muscle strength and function
Zusammenfassung
Hintergrund
Die zentrale Bedeutung der Muskelmasse, -kraft und -funktion im Alter ist eindeutig wissenschaftlich belegt. Die Frage, wie sich eine Adipositas auf die Kraft und die Funktion der Skelettmuskulatur im Alter auswirkt, wurde jedoch lange Zeit kaum systematisch untersucht.
Ziel der Arbeit
Diese Arbeit gibt eine Übersicht über Kohortenstudien zum Zusammenhang von Adipositas mit Muskelkraft und -funktion und diskutiert zugrundeliegende Ursachen wie Fettinfiltration, subklinische Inflammation und mitochondriale Dysfunktion.
Ergebnisse
Kohortenstudien zeigen, dass Adipositas trotz Zunahme des Muskelvolumens die Muskelkraft und -funktion im Alter negativ beeinflusst, was zu Aktivitätseinschränkungen und einem höheren Risiko für Invalidität führen kann. Neue Daten weisen darauf hin, dass Fettinfiltration im Skelettmuskel mit geringerer Muskelqualität und Leistungsfähigkeit assoziiert ist. Weitere Mechanismen wie subklinische Inflammation und mitochondriale Dysfunktion tragen ebenfalls zur Verschlechterung der Muskelkraft und -funktion im Alter bei.
Abstract
Background
The pivotal role of muscle mass, strength, and function in old age is unequivocal. However, the effects of obesity on skeletal muscle strength and function in old age have only recently come under scrutiny.
Aim
This work aims to provide an overview of cohort studies examining the association between obesity and muscle strength and function, and to discuss underlying causes such as fat infiltration, subclinical inflammation, and mitochondrial dysfunction.
Results
Cohort studies, some based on large populations, show that despite increases in muscle volume, obesity negatively influences muscle strength and function in old age. This can lead to activity restrictions, promoting loss of independence and higher disability risk. New data indicate that fat infiltration in skeletal muscle, associated with age and fat mass, correlates with lower muscle quality and performance. Additionally, obesity-related mechanisms like subclinical inflammation and mitochondrial dysfunction contribute to deteriorating muscle strength and function in old age.
Publication History
Article published online:
28 February 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Eitmann S, Matrai P, Hegyi P. et al. Obesity paradox in older sarcopenic adults – a delay in aging: A systematic review and meta-analysis. Ageing Res Rev 2024; 93: 102164
- 2 Beals JW, Burd NA, Moore DR. et al. Obesity Alters the Muscle Protein Synthetic Response to Nutrition and Exercise. Front Nutr 2019; 6: 87
- 3 Hulens M, Vansant G, Lysens R. et al. Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes Relat Metab Disord 2001; 25: 676-681
- 4 Prieto-Alhambra D, Premaor MO, Avilés FF. et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 2012; 27: 294-300
- 5 Morgan PT, Smeuninx B, Breen L. et al. Exploring the Impact of Obesity on Skeletal Muscle Function in Older Age. Front Nutr 2020; 7: 569904
- 6 Correa-de-Araujo R, Addison O, Miljkovic I. et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front Physiol 2020; 11: 963
- 7 Marcus RL, Addison O, Kidde JP. et al. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging 2010; 14: 362-366
- 8 Janssen I, Heymsfield SB, Wang ZM. et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985) 2000; 89: 81-88
- 9 Newman AB, Haggerty CL, Goodpaster B. et al. Strength and muscle quality in a well-functioning cohort of older adults: the Health, Aging and Body Composition Study. J Am Geriatr Soc 2003; 51: 323-330
- 10 Baumgartner RN, Wayne SJ, Waters DL. et al. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res 2004; 12: 1995-2004
- 11 Koster A, Ding J, Stenholm S. et al. Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults?. J Gerontol A Biol Sci Med Sci 2011; 66: 888-895
- 12 Rolland Y, Lauwers-Cances V, Cristini C. et al. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l'OSteoporose) Study. Am J Clin Nutr 2009; 89: 1895-1900
- 13 Bouchard DR, Dionne IJ, Brochu M. Sarcopenic/obesity and physical capacity in older men and women: data from the Nutrition as a Determinant of Successful Aging (NuAge)-the Quebec longitudinal Study. Obesity (Silver Spring) 2009; 17: 2082-2088
- 14 Villareal DT, Banks M, Siener C. et al. Physical frailty and body composition in obese elderly men and women. Obes Res 2004; 12: 913-920
- 15 Himes CL, Reynolds SL. Effect of obesity on falls, injury, and disability. J Am Geriatr Soc 2012; 60: 124-129
- 16 Aragon AA, Tipton KD, Schoenfeld BJ. Age-related muscle anabolic resistance: inevitable or preventable?. Nutr Rev 2023; 81: 441-454
- 17 Gu X, Wang L, Liu S. et al. Adipose tissue adipokines and lipokines: Functions and regulatory mechanism in skeletal muscle development and homeostasis. Metabolism 2023; 139: 155379
- 18 Pienkowska J, Brzeska B, Kaszubowski M. et al. MRI assessment of ectopic fat accumulation in pancreas, liver and skeletal muscle in patients with obesity, overweight and normal BMI in correlation with the presence of central obesity and metabolic syndrome. Diabetes Metab Syndr Obes 2019; 12: 623-636
- 19 Ahn H, Kim DW, Ko Y. et al. Updated systematic review and meta-analysis on diagnostic issues and the prognostic impact of myosteatosis: A new paradigm beyond sarcopenia. Ageing Res Rev 2021; 70: 101398
- 20 Wang X, Hu Z, Hu J. et al. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 2006; 147: 4160-4168
- 21 Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 2016; 126: 12-22
- 22 Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr 2000; 71: 885-892
- 23 Szendroedi J, Yoshimura T, Phielix E. et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci USA 2014; 111: 9597-9602
- 24 Rivas DA, McDonald DJ, Rice NP. et al. Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity. Am J Physiol Regul Integr Comp Physiol 2016; 310: R561-9
- 25 Mastrocola R, Collino M, Nigro D. et al. Accumulation of advanced glycation end-products and activation of the SCAP/SREBP Lipogenetic pathway occur in diet-induced obese mouse skeletal muscle. PLoS One 2015; 10: e0119587
- 26 Reid KF, Fielding RA. Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev 2012; 40: 4-12
- 27 Bean JF, Leveille SG, Kiely DK. et al. A comparison of leg power and leg strength within the InCHIANTI study: which influences mobility more?. J Gerontol A Biol Sci Med Sci 2003; 58: 728-733
- 28 Goodpaster BH, Carlson CL, Visser M. et al. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol (1985) 2001; 90: 2157-2165
- 29 Vivodtzev I, Moncharmont L, Tamisier R. et al. Quadriceps muscle fat infiltration is associated with cardiometabolic risk in COPD. Clin Physiol Funct Imaging 2018; 38: 788-797
- 30 Visser M, Goodpaster BH, Kritchevsky SB. et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 2005; 60: 324-333
- 31 Lang T, Cauley JA, Tylavsky F. et al. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 2010; 25: 513-519
- 32 Goodpaster BH, Chomentowski P, Ward BK. et al. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol (1985) 2008; 105: 1498-1503
- 33 Li CW, Kang Y. Shyh-Chang Ng et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle 2022; 13: 781-794
- 34 Reinders I, Murphy RA, Brouwer IA. et al. Muscle Quality and Myosteatosis: Novel Associations With Mortality Risk: The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study. Am J Epidemiol 2016; 183: 53-60
- 35 Jun L, Tao YX, Geetha T. et al. Mitochondrial Adaptation in Skeletal Muscle: Impact of Obesity, Caloric Restriction, and Dietary Compounds. Curr Nutr Rep 2024; 13: 500-515
- 36 Mucinski JM, Distefano G, Dubé J. et al. Insulin sensitivity and skeletal muscle mitochondrial respiration in Black and White women with obesity. J Clin Endocrinol Metab 2024; 29: dgae600
- 37 Kristensen MD, Petersen SM, Møller KE. et al. Obesity leads to impairments in the morphology and organization of human skeletal muscle lipid droplets and mitochondrial networks, which are resolved with gastric bypass surgery-induced improvements in insulin sensitivity. Acta Physiol (Oxf) 2018; 224: e13100
- 38 Potes Y, Pérez-Martinez Z, Bermejo-Millo J. et al. Overweight in the Elderly Induces a Switch in Energy Metabolism that Undermines Muscle Integrity. Aging Dis 2019; 10: 217-230
- 39 Brennan AM, Coen PL, Mau T. et al. Associations between regional adipose tissue distribution and skeletal muscle bioenergetics in older men and women. Obesity (Silver Spring) 2024; 32: 1125-1135
- 40 Trevino MB, Zhang X, Standley RA. et al. Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy. Am J Physiol Endocrinol Metab 2019; 317: E899-E910
- 41 Cummings SR, Newman AB, Coen PM. et al. The Study of Muscle, Mobility and Aging (SOMMA): A Unique Cohort Study About the Cellular Biology of Aging and Age-related Loss of Mobility. J Gerontol A Biol Sci Med Sci 2023; 78: 2083-2093
- 42 Mau T, Lui LY, Distefano G. et al. Mitochondrial Energetics in Skeletal Muscle Are Associated With Leg Power and Cardiorespiratory Fitness in the Study of Muscle, Mobility and Aging. J Gerontol A Biol Sci Med Sci 2023; 78: 1367-1375
- 43 Cummings SR, Lui LY, Glynn NW. et al. Energetics and clinical factors for the time required to walk 400 m: The Study of Muscle, Mobility and Aging (SOMMA). J Am Geriatr Soc 2024; 72: 1035-1047
- 44 Qiao YS, Santanasto AJ, Coen PM. et al. Associations between skeletal muscle energetics and accelerometry-based performance fatigability: Study of Muscle, Mobility and Aging. Aging Cell 2024; 23: e14015
- 45 Kramer PA, Zamora E, Barnes HN. et al. The Association of Skeletal Muscle Energetics With Recurrent Falls in Older Adults Within the Study of Muscle, Mobility and Aging. J Gerontol A Biol Sci Med Sci 2024; 79: glae018
- 46 Tsujinaka T, Fujita J, Ebisui C. et al. Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest 1996; 97: 244-249
- 47 Baltgalvis KA, Berger FG, Peña MMO. et al. Muscle wasting and interleukin-6-induced atrogin-I expression in the cachectic Apc (Min/+) mouse. Pflugers Arch 2009; 457: 989-1001
- 48 Reid MB, Li YP. Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res 2001; 2: 269-272
- 49 Khan IM, Perrard XY, Brunner G. et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond) 2015; 39: 1607-1618
- 50 Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest 2017; 127: 43-54
- 51 Tay J, Goss AM, Locher JL. et al. Physical Function and Strength in Relation to Inflammation in Older Adults with Obesity and Increased Cardiometabolic Risk. J Nutr Health Aging 2019; 23: 949-957
- 52 Nascimento DDC, da Cunha Oliveira S, Vieira DCL. et al. The impact of sarcopenic obesity on inflammation, lean body mass, and muscle strength in elderly women. Int J Gen Med 2018; 11: 443-449
- 53 Visser M, Harris TB, Hannan MT. et al. Body fat and skeletal muscle mass in relation to physical disability in very old men and women of the Framingham Heart Study. J Gerontol A Biol Sci Med Sci 1998; 53: M214-21
- 54 Reynolds SL, Saito Y, Crimmins EM. The impact of obesity on active life expectancy in older American men and women. Gerontologist 2005; 45: 438-444
- 55 Stenholm S, Alley D, Bandinelli S. et al. The effect of obesity combined with low muscle strength on decline in mobility in older persons: results from the InCHIANTI study. Int J Obes (Lond) 2009; 33: 635-644
- 56 De Stefano F, Zambon S, Giacometti L. et al. Obesity, Muscular Strength, Muscle Composition and Physical Performance in an Elderly Population. J Nutr Health Aging 2015; 19: 785-791