Subscribe to RSS
DOI: 10.1055/a-2460-7254
Comparison of 2D and 3D lung lobe quantification with Ventilation/Perfusion Ratio
Vergleich der 2D- und 3D-Lungenlappenquantifizierung auf Basis des Ventilation/Perfusion-Verhältnisses This work was supported in parts by GE Healthcare (Haifa, Israel) for evaluation of the eligibility of the GE Q. Lung program (QLUNG).
Abstract
Aim
In this study, standard 2D lung lobe quantification is compared with two 3D lung lobe quantification software tools to investigate the clinical benefit of a 3D approach. The accuracy of 2D versus 3D lung lobe quantification is evaluated based on the calculated numerical ventilation-perfusion ratio (VQR) using a receiver operating curve (ROC) analysis.
Methods
A study group of 50 consecutive patients underwent a planar lung scintigraphy (anterior/posterior) as well as ventilation/perfusion single photon emission computed tomography (SPECT/CT) to exclude acute pulmonary embolism. All data were acquired with SPECT OPTIMA NM/CT 640 (GE Healthcare). 2D analysis was performed for all ventilation/perfusion scans using a lung analysis tool (Syngo Workstation, Siemens Healthineers). 3D quantification analysis was performed using QLUNG (Q. Lung, Xeleris 4.0, GE Healthcare) and LLQ (Hermes Hybrid 3D Lung Lobar Quantification, Hermes Medical Solutions). The area under the ROC curve (AUC) served as a decision criterion to find the best agreement between clinical PE findings and calculated PE candidates of the 2D and 3D methods. The significance of the ROC curves was evaluated using the DeLong comparison.
Results
A significant difference between 2D/3D could be determined. Both 3D approaches showed robust and comparable results. The AUC range of [0.10, 0.67] was given for 2D lobar analysis, QLUNG AUC range revealed in [0.39,0.74] and LLQ AUC range was [0.42,0.72]. Averaged over all lung lobes an AUC=0.39 was given for 2D analysis and AUC=0.58 was given for LLQ/QLUNG.
Conclusion
We could demonstrate the better performance of 3D analysis compared to 2D analysis. Consequently, is recommended to use a 3D approach in clinical practice.
Zusammenfassung
Ziel
In dieser Studie wird die standardmäßige 2D-Lungenlappenquantifizierung mit 2 3D-Lungenlappenquantifizierungs-Softwaretools verglichen, um den klinischen Nutzen eines 3D-Ansatzes zu untersuchen. Die Genauigkeit der 2D- gegenüber der 3D-Lungenlappenquantifizierung wird anhand des berechneten numerischen Ventilations-Perfusions-Verhältnisses (VQR) unter Verwendung einer Receiver-Operating-Curve (ROC) -Analyse bewertet.
Methoden
Eine Studiengruppe von 50 konsekutiven Patienten unterzog sich zum Ausschluss einer akuten Lungenembolie einer planaren Lungenszintigrafie (anterior/posterior) sowie einer Ventilations-Perfusions-Einzelphotonen-Emissions-Computertomografie (SPECT/CT). Alle Daten wurden mit SPECT OPTIMA NM/CT 640 (GE Healthcare) aufgenommen. Die 2D-Analyse wurde für alle Ventilations-Perfusions-Scans mit einem Lungenanalyse-Tool (Syngo Workstation, Siemens Healthineers) durchgeführt. Die 3D-Quantifizierungsanalyse wurde mit QLUNG (Q. Lung, Xeleris 4.0, GE Healthcare) und LLQ (Hermes Hybrid 3D Lung Lobar Quantification, Hermes Medical Solutions) durchgeführt. Die Fläche unter der ROC-Kurve (AUC) diente als Entscheidungskriterium, um die beste Übereinstimmung zwischen klinischen PE-Befunden und berechneten PE-Kandidaten der 2D- und 3D-Methoden zu finden. Die Signifikanz der ROC-Kurven wurde mittels DeLong-Algorithmus überprüft.
Ergebnisse
Es konnte ein signifikanter Unterschied zwischen 2D und 3D festgestellt werden. Beide 3D-Ansätze zeigten robuste und vergleichbare Ergebnisse. Es ergab sich ein AUC-Bereich von 0,10–0,67 für die Lungenlappen-basierte 2D-Analyse. Für QLUNG ergab sich ein AUC-Bereich von 0,39–0,74 und für LLQ ein AUC-Bereich von 0,42–0,72. Für alle Lungenlappen ergab sich gemittelt für die 2D-Analyse ein AUC-Wert von 0,39 und für LLQ/QLUNG ein AUC-Wert von 0,58.
Schlussfolgerung
Wir konnten die bessere Leistung der 3D-Analyse im Vergleich zur 2D-Analyse nachweisen. Daher wird empfohlen, in der klinischen Praxis einen 3D-Ansatz zu verwenden.
Keywords
V/P SPECT/CT - Planar - Ventilation/Perfusion Ratio - 3D Lung Lobe Quantification - Pulmonary Embolism - Lung ScintigraphyPublication History
Received: 14 November 2023
Accepted after revision: 31 October 2024
Article published online:
04 December 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 PIOPED Investigators. Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED). JAMA 1990; 263 (20) 2753-2759
- 2 Sostman HD, Miniati M, Gottschalk A. et al. Sensitivity and specificity of perfusion scintigraphy combined with chest radiography for acute pulmonary embolism in PIOPED II. J Nucl Med 2008; 49 (11) 1741-1748
- 3 Stein PD, Beemath A, Matta F. et al. Clinical characteristics of patients with acute pulmonary embolism: data from PIOPED II. Am J Med 2007; 120 (10) 871-879
- 4 Bajc M, Schümichen C, Grüning T. et al. EANM guideline for ventilation/perfusion single-photon emission computed tomography (SPECT) for diagnosis of pulmonary embolism and beyond. Eur J Nucl Med Mol Imaging 2019; 46 (12) 2429-2451
- 5 Bajc M, Chen Y, Wang J. et al. Identifying the heterogeneity of COPD by V/P SPECT: a new tool for improving the diagnosis of parenchymal defects and grading the severity of small airways disease. Int J Chron Obstruct Pulmon Dis 2017; 12: 1579-1587
- 6 Gutte H, Mortensen J, Jensen CV. et al. Comparison of V/Q SPECT and planar V/Q lung scintigraphy in diagnosing acute pulmonary embolism. Nucl Med Commun 2010; 31 (01) 82-86
- 7 Bailey EA, Bailey DL, Roach PJ. V/Q imaging in 2010: a quick start guide. Semin Nucl Med 2010; 40 (06) 408-414
- 8 Roach PJ, Bailey DL, Schembri GP. et al. Transition from planar to SPECT V/Q scintigraphy: rationale, practicalities, and challenges. Semin Nucl Med 2010; 40 (06) 397-407
- 9 Le Roux PY, Robin P, Salaun PY. New developments and future challenges of nuclear medicine and molecular imaging for pulmonary embolism. Thromb Res 2018; 163: 236-241
- 10 Wagner Jr Hn, Sabiston Jr Dc, Mcafee JG. et al. Diagnosis of massive pulmonary embolism in man by radioisotope scanning. N Engl J Med 1964; 271: 377-384
- 11 Gutte H, Mortensen J, Jensen CV. et al. Detection of pulmonary embolism with combined ventilation-perfusion SPECT and low-dose CT: head-to-head comparison with multidetector CT angiography. J Nucl Med 2009; 50 (12) 1987-1992
- 12 Kumar N, Xie K, Mar W. et al. Software-Based Hybrid Perfusion SPECT/CT Provides Diagnostic Accuracy When Other Pulmonary Embolism Imaging Is Indeterminate. Nucl Med Mol Imaging 2015; 49 (04) 303-311
- 13 Mazurek A, Dziuk M, Witkowska-Patena E. et al. The Utility of Hybrid SPECT/CT Lung Perfusion Scintigraphy in Pulmonary Embolism Diagnosis. Respiration 2015; 90 (05) 393-401
- 14 Medicine EAoN. EANM. Dosage Card. EANM Executive Office. 2016 Accessed November 13, 2023 at: https://www.eanm.org/publications/dosage-card
- 15 Knollmann D, Genseke P, Schaefer WM. Update preinterventional lung quantification. Der Nuklearmediziner 2017; 40 (01) 79-85
- 16 Genseke P, Wetz C, Wallbaum T. et al. Pre-operative quantification of pulmonary function using hybrid-SPECT/low-dose-CT: A pilot study. Lung Cancer 2018; 118: 155-160
- 17 Pape H, Kurtz A, Silbernagl S. et al. vollständig überarbeitete und erweiterte Auflage. ed. 7. Stuttgart: Thieme; 2014.
- 18 West JB Luks A. West’s Respiratory Physiology : The Essentials. Tenth ed. Philadelphia: Wolters Kluwer; 2016
- 19 Vogt JK, Heinzel A, Sensen M. et al. Computer-aided diagnosis of pulmonary artery embolisms and other lung lesions using SPECT/CT and 3D software tools for perfusion and ventilation scintigraphy. Conference: NuklearMedizin 2020; 59 (02) 139
- 20 Vogt JK, Vogt WK, Heinzel A. et al. Comparison of planar and 3D lung lobe quantification. Nuklearmedizin 2022; 61 (02) 205
-
21
Vogt JK,
Vogt WK,
Heinzel A.
et al.
Lung function quantification with numerical ventilation/perfusion ratio. Conference: Nuklearmedizin 2023; April 2023; Abstract-ID: WIB256.
- 22 Vogt JK, Heinzel A, Mottaghy FM. Interrater Variability in Clinical Studies – A study on Pulmonary Artery Embolism (PE) Diagnosis with V/P-SPECT/CT. Nuklearmedizin 2021; 60 (02) 174
-
23
Schümichen C,
Schmidt M,
Krause T.
DGN-Handlungsempfehlung (S1-Leitlinie) Lungenszintigraphie Stand 11/2017 -AWMF – Registernummer 031–005. Deutsche Gesellschaft für Nuklearmedizin e.V.; 2017(2567–6407).
- 24 Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied Logistic Regression. 3rd Edition. Hoboken NJ: John Wiley & Sons; 2013.
- 25 Mende T, Orlick M, Fischbeck O. et al. Risikoeinschätzung einer operativen Therapie des Bronchialkarzinoms mit Hilfe der quantitativen Lungenperfusionsszintigraphie [Risk assessment of bronchial cancer surgery using quantitative lung perfusion scintigraphy]. Nuklearmedizin 1990; 29 (06) 274-277
- 26 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988; 44 (03) 837-845
- 27 Sun X, Xu W. Fast implementation of DeLong’s algorithm for comparing the areas under correlated receiver operating characteristic curves. IEEE Signal Processing Letters 2014; 21 (11) 1389-1393
- 28 Knollmann D, Meyer A, Noack F. et al. Preoperative assessment of relative pulmonary lobar perfusion fraction in lung cancer patients. Nuklearmedizin 2015; 54 (04) 178-182
- 29 De Hond AAH, Steyerberg EW, van Calster B. Interpreting area under the receiver operating characteristic curve. The Lancet Digital Health 2022;
- 30 Vogt JKV, Vogt Wolfgang WK, Heinzel A. et al. Computational Decision Support for PE Diagnosis based on Ventilation Perfusion Ratio. Nuklearmedizin 2024;
- 31 Schaefer WM, Knollmann D, Avondo J. et al. Volume/perfusion ratio from lung SPECT/CT. Nuklearmedizin 2018; 57 (01) 31-34
- 32 Castelyn G, Laranjo L, Schreier G. et al. Predictive performance and impact of algorithms in remote monitoring of chronic conditions: A systematic review and meta-analysis. Int J Med Inform 2021; 156: 104620