Synthesis
DOI: 10.1055/a-2403-0760
short review

Enzymatic and Bio-Inspired Enantioselective Oxidation of Non-Activated C(sp 3)–H Bonds

a   Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona 17071, Catalonia, Spain
b   Dipartimento di Scienze e Tecnologie Chimiche, Università ‘Tor Vergata’, Via della Ricerca Scientifica, 1 00133 Rome, Italy
,
Massimo Bietti
b   Dipartimento di Scienze e Tecnologie Chimiche, Università ‘Tor Vergata’, Via della Ricerca Scientifica, 1 00133 Rome, Italy
,
Miquel Costas
a   Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona 17071, Catalonia, Spain
› Author Affiliations
Economic support from Spain, Ministry of Science (MINECO, PRE2019-090149 to AP, PGC2018-101737-B-I00 to M.C.), Generalitat de Catalunya (ICREA Academia to M.C., 2017 SGR-00264 and 2017 SGR-1707).


Abstract

The enantioselective oxidation of C–H bonds relies on two different approaches: the use of enzymes or bio-inspired transition metal catalysts. Both are powerful tools, as they transform ubiquitous C(sp3)–H bonds into valuable oxygenated building blocks. However, the reaction remains a challenge in synthetic chemistry, continuously demanding efficient catalytic systems to improve substrate scopes. Optimization of site- and enantioselectivities in bio-catalytic systems is underpinned by protein engineering, while ligand design and medium effects play crucial roles in bio-inspired synthetic complexes. In this Short Review, recent advances in the field are described, focusing on reactions that target strong, non-activated C–H bonds.

1 Introduction

1.1 Enantioselective Catalytic C–H Oxidation in Nature and Bio-Inspired Systems

1.2 Biological C–H Oxidation Mechanism and Challenges for the Implementation of Chirality with Synthetic Catalysts

1.3 Bio-Catalytic C–H Oxidation Systems: From Microorganism to Engineered Enzymes

1.4 Mimicking Nature: The Bio-Inspired C–H Oxidation Approach

1.5 Origin of Enantioselectivity

2 Enantioselective C–H Oxidation of Non-Activated C–H Bonds

2.1 Hydroxylation at Non-Activated C–H Bonds by Bio-Catalytic Systems

2.2 Enantioselective C–H Lactonization with Enzymatic Systems

2.3 Oxidation at Non-Activated C–H Bonds by Synthetic Catalysts

2.4 Enantioselective Lactonization with Small-Molecule Catalysts

3 Conclusions



Publication History

Received: 16 July 2024

Accepted after revision: 26 August 2024

Accepted Manuscript online:
26 August 2024

Article published online:
07 October 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nugent WA, RajanBabu TV, Burk MJ. Science 1993; 259: 479
  • 2 Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
  • 3 Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
  • 4 Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
  • 5 Godula K, Sames D. Science 2006; 312: 67
  • 6 Li F, Zhang X, Renata H. Curr. Opin. Chem. Biol. 2019; 49: 25
  • 7 Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
  • 8 Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Angew. Chem. Int. Ed. 2023; 62: e202309012
  • 9 Cramer J, Sager CP, Ernst B. J. Med. Chem. 2019; 62: 8915
  • 10 Brill ZG, Condakes ML, Ting CP, Maimone TJ. Chem. Rev. 2017; 117: 11753
  • 11 Mendoza SD, Rombola M, Tao Y, Zuend SJ, Götz R, McLaughlin MJ, Reisman SE. Org. Lett. 2022; 24: 3802
  • 12 Foley DJ, Waldmann H. Chem. Soc. Rev. 2022; 51: 4094
  • 13 Deng L, Dong G. Trends Chem. 2020; 2: 183
  • 14 Milan M, Bietti M, Costas M. Chem. Commun. 2018; 54: 9559
  • 15 Vicens L, Olivo G, Costas M. ACS Catal. 2020; 10: 8611
  • 16 Uchida T. Chem. Rec. 2023; 23: e202300156
  • 17 Uchida T. Synthesis 2021; 53: 3235
  • 18 Dantignana V, Milan M, Cussó O, Company A, Bietti M, Costas M. ACS Cent. Sci. 2017; 3: 1350
  • 19 Borrell M, Gil-Caballero S, Bietti M, Costas M. ACS Catal. 2020; 10: 4702
  • 20 Costas M. Chem. Rec. 2021; 21: 1
  • 21 Sisti S, Galeotti M, Scarchilli F, Salamone M, Costas M, Bietti M. J. Am. Chem. Soc. 2023; 145: 22086
  • 22 Salamone M, Galeotti M, Romero-Montalvo E, Van Santen JA, Groff BD, Mayer JM, Dilabio GA, Bietti M. J. Am. Chem. Soc. 2021; 143: 11759
  • 23 Roiban GD, Reetz MT. Chem. Commun. 2015; 51: 2208
  • 24 Hall M. RSC Chem. Biol. 2021; 2: 958
  • 25 Sun W, Sun Q. Acc. Chem. Res. 2019; 52: 2370
  • 26 Ottenbacher RV, Bryliakova AA, Kurganskii VI, Prikhodchenko PV, Medvedev AG, Bryliakov KP. Chem. Eur. J. 2023; 29: e202302772
  • 27 Meunier B, de Visser SP, Shaik S. Chem. Rev. 2004; 104: 3947
  • 28 Dawson JH, Sono M. Chem. Rev. 1987; 87: 1255
  • 29 Zhang RK, Huang X, Arnold FH. Curr. Opin. Chem. Biol. 2019; 49: 67
  • 30 Ortiz De Montellano PR. Chem. Rev. 2010; 110: 932
  • 31 Arnold FH. Angew. Chem. Int. Ed. 2018; 57: 4143
  • 32 Eschmann C, Song L, Schreiner PR. Angew. Chem. Int. Ed. 2021; 60: 4823
  • 33 Ottenbacher RV, Talsi EP, Bryliakov KP. Chem. Rec. 2018; 18: 78
  • 34 White MC, Zhao J. J. Am. Chem. Soc. 2018; 140: 13988
  • 35 Kal S, Xu S, Que L. Angew. Chem. Int. Ed. 2020; 59: 7332
  • 36 Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Coord. Chem. Rev. 2020; 421: 213443
  • 37 Chen J, Song W, Yao J, Wu Z, Lee Y.-M, Wang Y, Nam W, Wang B. J. Am. Chem. Soc. 2023; 145: 5456
  • 38 Bryliakov KP. ACS Catal. 2023; 13: 10770
  • 39 Xiao X, Xu K, Gao Z.-H, Zhu Z.-H, Ye C, Zhao B, Luo S, Ye S, Zhou Y.-G, Xu S, Zhu S.-F, Bao H, Sun W, Wang X, Ding K. Sci. China Chem. 2023; 66: 1553
  • 40 We thank the authors of recent review papers, for their valuable contributions that have deepened the understanding of topics closely related to this work.
  • 41 Park JB. J. Microbiol. Biotechnol. 2007; 17: 379
  • 42 Renata H. J. Ind. Microbiol. Biotechnol. 2021; 48: kuab002
  • 43 Poblete-Castro I, Becker J, Dohnt K, Santos VM. Dos, Wittmann C. Appl. Microbiol. Biotechnol. 2012; 93: 2279
  • 44 Di Gennaro P, Bargna A, Sello G. Appl. Microbiol. Biotechnol. 2011; 90: 1817
  • 45 Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J. Structure 1995; 3: 41
  • 46 Stepan AF, Mascitti V, Beaumont K, Kalgutkar AS. Med. Chem. Commun. 2013; 4: 631
  • 47 Sawayama AM, Chen MM. Y, Kulanthaivel P, Kuo MS, Hemmerle H, Arnold FH. Chem. Eur. J. 2009; 15: 11723
  • 48 Münch J, Püllmann P, Zhang W, Weissenborn MJ. ACS Catal. 2021; 11: 9168
  • 49 Kluge M, Ullrich R, Scheibner K, Hofrichter M. Green Chem. 2012; 14: 440
  • 50 Püllmann P, Knorrscheidt A, Münch J, Palme PR, Hoehenwarter W, Marillonnet S, Alcalde M, Westermann B, Weissenborn MJ. Commun. Biol. 2021; 4: 562
  • 51 Zaks A, Dodds DR. J. Am. Chem. Soc. 1995; 117: 10419
  • 52 Halder JM, Nestl BM, Hauer B. ChemCatChem 2018; 10: 178
  • 53 Bowers NI, Boyd DR, Sharma ND, Goodrich PA, Groocock MR, Blacker AJ, Goode’ P, Dalton H. J. Chem. Soc., Perkin Trans. 1 1999; 1453
  • 54 Wackett LP, Kwart LD, Gibson DT. Biochemistry 1988; 27: 1360
  • 55 Zwick CR, Renata H. J. Am. Chem. Soc. 2018; 140: 1165
  • 56 Chen K, Que L. J. Am. Chem. Soc. 2001; 123: 6327
  • 57 Chen MS, White MC. Science 2007; 318 (5851) 783
  • 58 Ottenbacher RV, Samsonenko DG, Talsi EP, Bryliakov KP. Org. Lett. 2012; 14: 4310
  • 59 Groves JT, Nemo TE. J. Am. Chem. Soc. 1983; 105: 6243
  • 60 Groves JT, Viski P. J. Am. Chem. Soc. 1989; 111: 8537
  • 61 Miyafuji A, Katsuki T. Tetrahedron 1998; 54: 10339
  • 62 Hamada T, Irie R, Mihara J, Hamachi K, Katsuki T. Tetrahedron 1998; 54: 10017
  • 63 Punniyamurthy T, Katsuki T. Tetrahedron 1999; 55: 9439
  • 64 Hamachi K, Irie R, Katsuki T. Tetrahedron Lett. 1996; 37: 4979
  • 65 Srour H, Le Maux P, Simonneaux G. Inorg. Chem. 2012; 51: 5850
  • 66 Le Maux P. Srour H. F., Simonneaux G. 2012; 68: 5824
  • 67 Steinlandt PS, Zhang L, Meggers E. Chem. Rev. 2023; 123: 4764
  • 68 Bryliakov KP. Coord. Chem. Rev. 2024; 508: 215793
  • 69 Milan M, Bietti M, Costas M. ACS Cent. Sci. 2017; 3: 196
  • 70 Ruffoni A, Mykura RC, Bietti M, Leonori D. Nat. Synth. 2022; 1: 682
  • 71 Galeotti M, Salamone M, Bietti M. Chem. Soc. Rev. 2022; 51: 2171
  • 72 Olivo G, Cussó O, Costas M. Chem. Asian J. 2016; 11: 3148
  • 73 Peters MW, Meinhold P, Glieder A, Arnold FH. J. Am. Chem. Soc. 2003; 125: 13442
  • 74 Yang Y, Liu J, Li Z. Angew. Chem. Int. Ed. 2014; 53: 3120
  • 75 Münzer DF, Meinhold P, Peters MW, Feichtenhofer S, Griengl H, Arnold FH, Glieder A, De Raadt A. Chem. Commun. 2005; 2597
  • 76 Landwehr M, Hochrein L, Otey CR, Kasrayan A, Bäckvall JE, Arnold FH. J. Am. Chem. Soc. 2006; 128: 6058
  • 77 Chen H, Huang M, Yan W, Bai WJ, Wang X. ACS Catal. 2021; 11: 10625
  • 78 Roiban G.-D, Agudo R, Reetz MT. Angew. Chem. Int. Ed. 2014; 53: 8659
  • 79 Harwood LA, Xiong Z, Christensen KE, Wang R, Wong LL, Robertson J. J. Am. Chem. Soc. 2023; 145: 27767
  • 80 Zhang Y, Xiong Z, Li Y, Wilson M, Christensen KE, Jaques E, Hernández-Lladó P, Robertson J, Wong LL. Nat. Synth. 2022; 1: 936
    • 81a Manning J, Tavanti M, Porter JL, Kress N, De Visser SP, Turner NJ, Flitsch SL. Angew. Chem. Int. Ed. 2019; 58: 5668
    • 81b Ma Q, Shan W, Chu X, Xu H, Chen Z, Li F, Liao J.-L, He C, Bai W.-J, Wang X. Nat. Synth. 2024; 3: 123
  • 82 Milan M, Bietti M, Costas M. Org. Lett. 2018; 20: 2720
  • 83 Palone A, Casadevall G, Ruiz-Barragan S, Call A, Osuna S, Bietti M, Costas M. J. Am. Chem. Soc. 2023; 145: 15742
  • 84 Call A, Cianfanelli M, Besalú-Sala P, Olivo G, Palone A, Vicens L, Ribas X, Luis J, Bietti M, Costas M. J. Am. Chem. Soc. 2022; 144: 19542
  • 85 Cianfanelli M, Olivo G, Milan M, Klein Gebbink RJ. M, Ribas X, Bietti M, Costas M. J. Am. Chem. Soc. 2020; 142: 1584
  • 86 Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
  • 87 Kurganskiy VI, Ottenbacher RV, Shashkov MV, Talsi EP, Samsonenko DG, Bryliakov KP. Org. Lett. 2022; 24: 8764
  • 88 Vicens L, Bietti M, Costas M. Angew. Chem. Int. Ed. 2021; 60: 4740
  • 89 Call A, Capocasa G, Palone A, Vicens L, Aparicio E, Choukairi Afailal N, Siakavaras N, Eugènia López Saló M, Bietti M, Costas M. J. Am. Chem. Soc. 2023; 145: 18094
  • 90 Yang CJ, Liu L, Gu QS, Liu XY. CCS Chem. 2024; 6: 1612
  • 91 Wang X, He J, Wang Y, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Chem. Rev. 2024; 124: 10192