Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(06): 695-700
DOI: 10.1055/a-2388-9630
DOI: 10.1055/a-2388-9630
letter
Axially Chiral Phenanthroline Ligand-Enabled Copper-Catalyzed Enantioselective Arylation of Azonaphthalenes with Arylboronic Acids
We acknowledge the provision of financial support by the National Natural Science Foundation of China (22371072, 21702059) and the Fundamental Research Funds for the Central Universities (222201717003, JKJ01231652, JKVJ1241010, SLJ13233303)

Abstract
An axially chiral phenanthroline ligand bearing two BINOL units was found to be capable of promoting the copper-catalyzed enantioselective arylation of 2-azonaphthalenes with arylboronic acids. This atroposelective Michael-type addition affords a range of enantioenriched axially chiral biaryl compounds in synthetically useful yields with enantiomeric ratios of up to 91.5:8.5.
Key words
asymmetric catalysis - phenanthroline ligands - copper catalysis - azonaphthalenes - arylboronic acids - biarylsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2388-9630.
- Supporting Information
Publication History
Received: 15 July 2024
Accepted after revision: 15 August 2024
Accepted Manuscript online:
15 August 2024
Article published online:
09 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
- 1b Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
- 1c Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 1d Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
- 1e LaPlante SR, Fader LD, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SP. F, Edwards PJ. J. Med. Chem. 2011; 54: 7005
- 1f Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
- 2a Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
- 2b Kočovský P, Vyskočil Š, Smrčina M. Chem. Rev. 2003; 103: 3213
- 2c Ding K, Li X, Ji B, Guo H, Kitamura M. Curr. Org. Synth. 2005; 2: 499
- 2d Ding K, Guo H, Li X, Yuan Y, Wang Y. Top. Catal. 2005; 35: 105
- 2e Berthod M, Mignani G, Woodward G, Lemaire M. Chem. Rev. 2005; 105: 1801
- 2f Shibasaki M, Matsunaga S. Chem. Soc. Rev. 2006; 35: 269
- 2g Akiyama T. Chem. Rev. 2007; 107: 5744
- 2h Terada M. Chem. Commun. 2008; 4097
- 2i Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
- 2j Rokade BV, Guiry PJ. ACS Catal. 2018; 8: 624
- 2k Cen S, Zhang Z. Youji Huaxue 2022; 42: 2574
- 2l Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
- 2m Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
- 4 Zhao X.-J, Li Z.-H, Ding T.-M, Tian J.-M, Tu Y.-Q, Wang A.-F, Xie Y.-Y. Angew. Chem. Int. Ed. 2021; 60: 7061
- 5a Qi L.-W, Mao J.-H, Zhang J, Tan B. Nat. Chem. 2018; 10: 58
- 5b Xia W, An Q.-J, Xiang S.-H, Li S, Wang Y.-B, Tan B. Angew. Chem. Int. Ed. 2020; 59: 6775
- 5c Xu W.-L, Zhao W.-M, Zhang R.-X, Chen J, Zhou L. Chem. Sci. 2021; 12: 14920
- 5d Qi L.-W, Li S, Xiang S.-H, Wang J, Tan B. Nat. Catal. 2019; 2: 314
- 5e Cen S, Huang N, Lian D, Shen A, Zhao M.-X, Zhang Z. Nat. Commun. 2022; 13: 4735
- 5f Yan S, Xia W, Li S, Song Q, Xiang S.-H, Tan B. J. Am. Chem. Soc. 2020; 142: 7322
- 6a Yin J, Buchwald SL. J. Am. Chem. Soc. 2000; 122: 12051
- 6b Cammidge AN, Crépy KV. L. Chem. Commun. 2000; 1723
- 6c Cammidge AN, Crépy KV. L. Tetrahedron 2004; 60: 4377
- 6d Bermejo A, Ros A, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2008; 130: 15798
- 6e Uozumi Y, Matsuura Y, Arakawa T, Yamada YM. A. Angew. Chem. Int. Ed. 2009; 48: 2708
- 6f Shen X, Jones GO, Watson DA, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 11278
- 6g Xu G, Fu W, Liu G, Senanayake CH, Tang W. J. Am. Chem. Soc. 2014; 136: 570
- 6h Ding L, Sui X, Gu Z. ACS Catal. 2018; 8: 5630
- 6i Shen D, Xu Y, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 14938
- 6j Yang H, Sun J, Gu W, Tang W. J. Am. Chem. Soc. 2020; 142: 8036
- 6k Gan KB, Zhong R.-L, Zhang Z.-W, Kwong FY. J. Am. Chem. Soc. 2022; 144: 14864
- 7a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 7b Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 7c Yamaguchi K, Yamaguchi J, Studer A, Itami K. Chem. Sci. 2012; 3: 2165
- 7d Yamaguchi K, Kondo H, Yamaguchi J, Itami K. Chem. Sci. 2013; 4: 3753
- 7e Gao Q, Wu C, Deng S, Li L, Liu Z.-S, Hua Y, Ye J, Liu C, Cheng H.-G, Cong H, Jiao Y, Zhou Q. J. Am. Chem. Soc. 2021; 143: 7253
- 8a Summers LA. Adv. Heterocycl. Chem. 1978; 22: 1
- 8b Sammes PG, Yahioglu G. Chem. Soc. Rev. 1994; 23: 327
- 8c Luman CR, Castellano FN. In Comprehensive Coordination Chemistry II, Vol. 1, Chap. 1.2. McCleverty JA, Meyer TJ. Elsevier; Oxford: 2004: 25
- 8d Lavie-Cambot A, Cantuel M, Leydet Y, Jonusauskas G, Bassani DM, McClenaghan ND. Coord. Chem. Rev. 2008; 252: 2572
- 8e Bencini A, Lippolis V. Coord. Chem. Rev. 2010; 254: 2096
- 8f Hu M.-Y, He Q, Fan S.-J, Wang Z.-C, Liu L.-Y, Mu Y.-J, Peng Q, Zhu S.-F. Nat. Commun. 2018; 9: 221
- 8g Hu M.-Y, Lian J, Sun W, Qiao T.-Z, Zhu S.-F. J. Am. Chem. Soc. 2019; 141: 4579
- 8h Zou H.-N, Zhu S.-F. Huaxue Jinzhan 2020; 32: 1766
- 8i Huang Q, Su Y.-X, Sun W, Hu M.-Y, Wang W.-N, Zhu S.-F. J. Am. Chem. Soc. 2022; 144: 515
- 8j Sun W, Li M.-P, Li L.-J, Huang Q, Hu M.-Y, Zhu S.-F. Chem. Sci. 2022; 13: 2721
- 9a Schoffers E. Eur. J. Org. Chem. 2003; 1145
- 9b Chelucci G, Thummel RP. Chem. Rev. 2002; 102: 3129
- 9c Gladiali S, Chelucci G, Chessa G, Delogu G, Soccolini F. J. Organomet. Chem. 1987; 327: C15
- 9d Gladiali S, Pinna L, Delogu G, Graf E, Brunner H. Tetrahedron: Asymmetry 1990; 1: 937
- 9e Gladiali S, Pinna L, Delogu G, Martin SD, Zassinovich G, Mestroni G. Tetrahedron: Asymmetry 1990; 1: 635
- 9f Kandzia C, Steckhan E, Knoch F. Tetrahedron: Asymmetry 1993; 4: 39
- 9g Peña-Cabrera E, Norrby P.-O, Sjögren M, Vitagliano A, De Felice V, Oslob J, Ishii S, O’Neill D, Åkermark B, Helquist P. J. Am. Chem. Soc. 1996; 118: 4299
- 9h Chelucci G, Pinna GA, Saba A, Sanna G. J. Mol. Catal. A: Chem. 2000; 159: 423
- 9i Gladiali S, Chelucci G, Mudadu MS, Gastaut M.-A, Thummel RP. J. Org. Chem. 2001; 66: 400
- 9j Chelucci G, Iuliano A, Muroni D, Saba A. J. Mol. Catal. A: Chem. 2003; 191: 29
- 9k Puglisi A, Benaglia M, Annunziata R, Bologna A. Tetrahedron Lett. 2003; 44: 2947
- 9l Nishikawa Y, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 8432
- 9m Naganawa Y, Namba T, Aoyama T, Shoji K, Nishiyama H. Chem. Commun. 2014; 50: 13224
- 9n Naganawa Y, Komatsu H, Nishiyama H. Chem. Lett. 2015; 44: 1652
- 9o Naganawa Y, Namba T, Kawagishi M, Nishiyama H. Chem. Eur. J. 2015; 21: 9319
- 9p Naganawa Y, Aoyama T, Nishiyama H. Org. Biomol. Chem. 2015; 13: 11499
- 9q Naganawa Y, Abe H, Nishiyama H. Synlett 2016; 27: 1973
- 9r Naganawa Y, Nishiyama H. Chem. Rec. 2016; 16: 2573
- 9s Naganawa Y, Aoyama T, Kato K, Nishiyama H. ChemistrySelect 2016; 1: 1938
- 9t Wojaczyńska E, Skarżewski J, Sidorowicz Ł, Wieczorek R, Wojaczyński J. New J. Chem. 2016; 40: 9795
- 9u Tamura M, Ogata H, Ishida Y, Takahashi Y. Tetrahedron Lett. 2017; 58: 3808
- 9v Naganawa Y, Abe H, Nishiyama H. Chem. Commun. 2018; 54: 2674
- 9w Annapureddy RR, Jandl C, Bach T. J. Am. Chem. Soc. 2020; 142: 7374
- 9x Chen Z.-Y, Xu K.-L, Wang X.-R, Hu P, Jiang W.-Y, Dai Y.-F, Peng L.-J, Liu X.-L. New J. Chem. 2024; 48: 6670
- 10 Cen S, Li S.-S, Zhao Y, Zhao M.-X, Zhang Z. Angew. Chem. Int. Ed. 2024; 63: e202407920
- 11 Tang J, Li J, Yang X, Zhang Z. Synlett 2022; 33: 1868
- 12 Li J, Bao R, Yang X, Cen S, Zhang Z. Huadong Ligong Daxue Xuebao, Ziran Kexueban. 2024; 50: 524
- 13 Liu M, Zhang X, Bao R, Xiao F, Cen S, Zhang Z. Org. Lett. 2023; 25: 5946
- 14 Copper-Catalyzed Enantioselective Arylation of Azonaphthalenes with Arylboronic Acids; General Procedure A reaction tube (10 mL) equipped with a magnetic stirrer bar was charged with CuCl2·2H2O (1.8 mg, 0.01 mmol), ligand L5 (7.6 mg, 0.01 mmol), and CH2Cl2 (3 mL), and the mixture was stirred at r.t. for 2 h. The appropriate azonaphthalene 2 (0.1 mmol), arylboronic acid 15 (0.15 mmol), and KHCO3 (15 mg, 0.15 mmol) were added, and the mixture was stirred at 25 °C for 3 d. The resulting mixture was directly purified by flash chromatography (silica gel, PE–EtOAc). Benzyl (S)-2-(1,1′-Binaphthalen-2-yl)hydrazinecarboxylate (16a) Yellow oil; yield: 27 mg (64%, er 87.5:12.5); [α]D 20 = +24.2 (c = 0.39, CHCl3). HPLC [Chiralcel OD-H, hexane–i-PrOH (92:8), 1.0 mL/min, λ = 254 nm]: tR (major) = 23.3 min; tR (minor) = 26.6 min. 1H NMR (400 MHz, CDCl3): δ = 7.94 (d, J = 8.0 Hz, 1 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.86 (d, J = 9.2 Hz, 1 H), 7.81 (d, J = 8.4 Hz, 1 H), 7.60–7.55 (m, 2 H), 7.44 (t, J = 7.6 Hz, 1 H), 7.36 (d, J = 8.8 Hz, 2 H), 7.29–6.91 (m, 9 H), 6.56 (br s, 1 H), 5.54 (br s, 1 H), 5.04 (s, 2 H). 13C NMR (101 MHz, CDCl3): δ = 166.11, 156.85, 143.28, 135.75, 134.14, 133.91, 133.30, 132.72, 129.61, 129.43, 129.24, 129.11, 128.68, 128.43, 128.33, 128.04, 126.60, 126.40, 126.24, 126.03, 125.02, 123.34, 118.81, 114.18, 67.57. The absolute configuration of 16a was assigned by reference to the literature.5f
For selected examples of enantioselective reactions catalyzed by metal/phenanthroline-based chiral ligands, see: