Z Gastroenterol 2025; 63(01): 56-64
DOI: 10.1055/a-2365-3796
Übersicht

Liver damage and immune responses

Leberschaden und Immunantworten
1   Institut für Molekulare Immunologie, Technische Universität München, München, Germany (Ringgold ID: RIN9184)
2   Zentrum für Infektionsprävention (ZIP), Technische Universität München, Freising, Germany (Ringgold ID: RIN9184)
› Author Affiliations

Abstract

Chronic liver disease (CLD) has massive systemic repercussions including major impacts on the body’s immune system. Abnormalities in phenotype, function and numbers of various immune cell subsets have been established by a large number of clinical and pre-clinical studies. The loss of essential immune functions renders CLD-patients exceptionally susceptible to bacterial and viral infections and also impairs the efficacy of vaccination. Consequently, infections represent a major clinical issue causing significant morbidity and mortality in these patients. Mechanistically, the immune dysfunction associated with CLD results from the increased translocation of bacteria and bacterial cues from the intestine. These trigger a signaling axis around the cytokines IFN I and IL-10 in hepatic myeloid cells, which aside from impairing the function of the myeloid cells themselves, also has notable negative impacts on the functionality of other immune cells. T cells in CLD-patients and -models are especially affected by this signaling axis and display a variety of quantitative and qualitative defects. Due to the high clinical relevance, understanding the mechanisms underlaying CED-associated immune dysfunction is of critical importance to discover and develop new therapeutic targets.

Zusammenfassung

Chronische Erkrankungen der Leber (CED) haben massive systemische Auswirkungen auf den Körper und beeinflussen auch die Funktionen des Immunsystems. In einer großen Anzahl klinischer und präklinischer Studien wurde etabliert, dass CED mit einer großen Bandbreite an Abnormalitäten in Phänotyp, Funktion und Anzahl verschiedener Immunzellpopulationen einhergehen. Der Verlust wichtiger Immunfunktionen macht CED-Patienten besonders anfällig für bakterielle und virale Infektionen und reduziert die Effektivität von Impfungen. Folglich stellen Infektionen in CED-Patienten ein bedeutendes klinisches Problem dar und gehen mit stark erhöhter Morbidität und Mortalität einher. Mechanistisch resultieren CED-assoziierte Immundysfunktionen aus der erhöhten Translokation von Bakterien und bakteriellen Produkten aus dem Darm. Diese induzieren in hepatischen myeloiden Zellen eine Signalachse mit den Zytokinen IFN I und IL-10, die, neben der Funktion der myeloiden Zellen selbst, auch die Funktionalität anderer Immunzellen vermindert. Dies manifestiert sich vor allem im T-Zellkompartment, das in CED-Patienten und -modellen bedeutende qualitative und quantitative Defekte aufweist. Aufgrund der hohen klinischen Relevanz von CED-assoziierter Immundysfunktion, ist das Verständnis der zugrunde liegenden Mechanismen von großer Bedeutung für die Entwicklung neuer therapeutischer Ansätze.



Publication History

Received: 30 August 2024

Accepted after revision: 13 November 2024

Article published online:
10 January 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Kubes P, Jenne C. Immune Responses in the Liver. Annu Rev Immunol 2018; 36: 247-277
  • 2 Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340: 448-454
  • 3 Knolle PA, Uhrig A, Hegenbarth S. et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol 1998; 114: 427-433
  • 4 Schildberg FA, Hegenbarth SI, Schumak B. et al. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur J Immunol 2008; 38: 957-967
  • 5 Huang LR, Wohlleber D, Reisinger F. et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8(+) T cells and successful immunotherapy against chronic viral liver infection. Nat Immunol 2013; 14: 574-583
  • 6 Lo RC, Kim H. Histopathological evaluation of liver fibrosis and cirrhosis regression. Clin Mol Hepatol 2017; 23: 302-307
  • 7 Piano S, Schmidt HH, Ariza X. et al. Association Between Grade of Acute on Chronic Liver Failure and Response to Terlipressin and Albumin in Patients With Hepatorenal Syndrome. Clin Gastroenterol Hepatol 2018; 16: 1792-1800 e1793
  • 8 Kerfoot SM, D’Mello C, Nguyen H. et al. TNF-alpha-secreting monocytes are recruited into the brain of cholestatic mice. Hepatology 2006; 43: 154-162
  • 9 Liu R, Kang JD, Sartor RB. et al. Neuroinflammation in Murine Cirrhosis Is Dependent on the Gut Microbiome and Is Attenuated by Fecal Transplant. Hepatology 2020; 71: 611-626
  • 10 Wiest R, Das S, Cadelina G. et al. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J Clin Invest 1999; 104: 1223-1233
  • 11 Bellot P, Garcia-Pagan JC, Frances R. et al. Bacterial DNA translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis. Hepatology 2010; 52: 2044-2052
  • 12 Clarembeau F, Bale G, Lanthier N. Cirrhosis and insulin resistance: current knowledge, pathophysiological mechanisms, complications and potential treatments. Clin Sci (Lond) 2020; 134: 2117-2135
  • 13 Albillos A, de la Hera A, Gonzalez M. et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 2003; 37: 208-217
  • 14 Tilg H, Wilmer A, Vogel W. et al. Serum levels of cytokines in chronic liver diseases. Gastroenterology 1992; 103: 264-274
  • 15 La Mura V, Reverter JC, Flores-Arroyo A. et al. Von Willebrand factor levels predict clinical outcome in patients with cirrhosis and portal hypertension. Gut 2011; 60: 1133-1138
  • 16 Buck M, Garcia-Tsao G, Groszmann RJ. et al. Novel inflammatory biomarkers of portal pressure in compensated cirrhosis patients. Hepatology 2014; 59: 1052-1059
  • 17 Shetty A, Jun Yum J, Saab S. The Gastroenterologist’s Guide to Preventive Management of Compensated Cirrhosis. Gastroenterol Hepatol (N Y) 2019; 15: 423-430
  • 18 Knolle PA. Staying local-antigen presentation in the liver. Curr Opin Immunol 2016; 40: 36-42
  • 19 Knolle P, Schlaak J, Uhrig A. et al. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 1995; 22: 226-229
  • 20 Berg M, Wingender G, Djandji D. et al. Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8+ T cell tolerance. Eur J Immunol 2006; 36: 2960-2970
  • 21 Limmer A, Ohl J, Wingender G. et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur J Immunol 2005; 35: 2970-2981
  • 22 Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol 2014; 60: 197-209
  • 23 You Q, Cheng L, Kedl RM. et al. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 2008; 48: 978-990
  • 24 Rimola A, Soto R, Bory F. et al. Reticuloendothelial system phagocytic activity in cirrhosis and its relation to bacterial infections and prognosis. Hepatology 1984; 4: 53-58
  • 25 Laleman W, Claria J, Van der Merwe S. et al. Systemic Inflammation and Acute-on-Chronic Liver Failure: Too Much, Not Enough. Can J Gastroenterol Hepatol 2018; 2018: 1027152
  • 26 Papp M, Vitalis Z, Altorjay I. et al. Acute phase proteins in the diagnosis and prediction of cirrhosis associated bacterial infections. Liver Int 2012; 32: 603-611
  • 27 Homann C, Varming K, Hogasen K. et al. Acquired C3 deficiency in patients with alcoholic cirrhosis predisposes to infection and increased mortality. Gut 1997; 40: 544-549
  • 28 Albillos A, Martin-Mateos R, Van der Merwe S. et al. Cirrhosis-associated immune dysfunction. Nat Rev Gastroenterol Hepatol 2022; 19: 112-134
  • 29 Zimmermann HW, Seidler S, Nattermann J. et al. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One 2010; 5: e11049
  • 30 Du Plessis J, Vanheel H, Janssen CE. et al. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol 2013; 58: 1125-1132
  • 31 Nakagawara A, Inokuchi K, Ikeda K. et al. Decreased superoxide (O2-)-generating activity of blood monocytes from patients with hepatic cirrhosis. Hepatogastroenterology 1984; 31: 201-203
  • 32 Gomez F, Ruiz P, Schreiber AD. Impaired function of macrophage Fc gamma receptors and bacterial infection in alcoholic cirrhosis. N Engl J Med 1994; 331: 1122-1128
  • 33 Shawcross DL, Wright GA, Stadlbauer V. et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 2008; 48: 1202-1212
  • 34 Munoz L, Albillos A, Nieto M. et al. Mesenteric Th1 polarization and monocyte TNF-alpha production: first steps to systemic inflammation in rats with cirrhosis. Hepatology 2005; 42: 411-419
  • 35 Munoz L, Borrero MJ, Ubeda M. et al. Intestinal Immune Dysregulation Driven by Dysbiosis Promotes Barrier Disruption and Bacterial Translocation in Rats With Cirrhosis. Hepatology 2019; 70: 925-938
  • 36 Markwick LJ, Riva A, Ryan JM. et al. Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology 2015; 148: 590-602 e510
  • 37 Lario M, Munoz L, Ubeda M. et al. Defective thymopoiesis and poor peripheral homeostatic replenishment of T-helper cells cause T-cell lymphopenia in cirrhosis. J Hepatol 2013; 59: 723-730
  • 38 Riva A, Patel V, Kurioka A. et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 2018; 67: 918-930
  • 39 Bottcher K, Rombouts K, Saffioti F. et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 2018; 68: 172-186
  • 40 Moreau R, Gao B, Papp M. et al. Acute-on-chronic liver failure: A distinct clinical syndrome. J Hepatol 2021; 75: S27-S35
  • 41 Wasmuth HE, Kunz D, Yagmur E. et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J Hepatol 2005; 42: 195-201
  • 42 Xing T, Li L, Cao H. et al. Altered immune function of monocytes in different stages of patients with acute on chronic liver failure. Clin Exp Immunol 2007; 147: 184-188
  • 43 Peter J, Frey O, Stallmach A. et al. Attenuated antigen-specific T cell responses in cirrhosis are accompanied by elevated serum interleukin-10 levels and down-regulation of HLA-DR on monocytes. BMC Gastroenterol 2013; 13: 37
  • 44 Lebosse F, Gudd C, Tunc E. et al. CD8(+)T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine 2019; 49: 258-268
  • 45 Hackstein CP, Assmus LM, Welz M. et al. Gut microbial translocation corrupts myeloid cell function to control bacterial infection during liver cirrhosis. Gut 2017; 66: 507-518
  • 46 Hackstein CP, Spitzer J, Symeonidis K. et al. Interferon-induced IL-10 drives systemic T-cell dysfunction during chronic liver injury. J Hepatol 2023; 79: 150-166
  • 47 Abe T, Arai T, Ogawa A. et al. Kupffer cell-derived interleukin 10 is responsible for impaired bacterial clearance in bile duct-ligated mice. Hepatology 2004; 40: 414-423
  • 48 Fernandez J, Navasa M, Gomez J. et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002; 35: 140-148
  • 49 Fiuza C, Salcedo M, Clemente G. et al. In vivo neutrophil dysfunction in cirrhotic patients with advanced liver disease. J Infect Dis 2000; 182: 526-533
  • 50 Christou L, Pappas G, Falagas ME. Bacterial infection-related morbidity and mortality in cirrhosis. Am J Gastroenterol 2007; 102: 1510-1517
  • 51 Bonnel AR, Bunchorntavakul C, Reddy KR. Immune dysfunction and infections in patients with cirrhosis. Clin Gastroenterol Hepatol 2011; 9: 727-738
  • 52 Fernandez J, Acevedo J, Wiest R. et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut 2018; 67: 1870-1880
  • 53 Deschenes M, Villeneuve JP. Risk factors for the development of bacterial infections in hospitalized patients with cirrhosis. Am J Gastroenterol 1999; 94: 2193-2197
  • 54 Caly WR, Strauss E. A prospective study of bacterial infections in patients with cirrhosis. J Hepatol 1993; 18: 353-358
  • 55 Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. Semin Liver Dis 2008; 28: 26-42
  • 56 Moreau R, Jalan R, Gines P. et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013; 144: 1426-1437
  • 57 Arvaniti V, D’Amico G, Fede G. et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010; 139: 1246-1256
  • 58 Gustot T, Felleiter P, Pickkers P. et al. Impact of infection on the prognosis of critically ill cirrhotic patients: results from a large worldwide study. Liver Int 2014; 34: 1496-1503
  • 59 Tanaka S, Toh Y, Minagawa H. et al. Reactivation of cytomegalovirus in patients with cirrhosis: analysis of 122 cases. Hepatology 1992; 16: 1409-1414
  • 60 Varani S, Lazzarotto T, Margotti M. et al. Laboratory signs of acute or recent cytomegalovirus infection are common in cirrhosis of the liver. J Med Virol 2000; 62: 25-28
  • 61 Chou AL, Huang WW, Lin MN. et al. Human herpesvirus type 8 in patients with cirrhosis independent of thrombocytopenia. J Clin Pathol 2010; 63: 254-258
  • 62 Rosi S, Poretto V, Cavallin M. et al. Hepatic decompensation in the absence of obvious precipitants: the potential role of cytomegalovirus infection/reactivation. BMJ Open Gastroenterol 2015; 2: e000050
  • 63 Marinelli RM, Delle Monache M, Gerardi R. et al. Liver pathology in cytomegalovirus infection associated with hepatitis B virus. J Int Med Res 1993; 21: 154-157
  • 64 Zuschke CA, Herrera JL, Pettyjohn FS. Cytomegalovirus hepatitis mimicking an acute exacerbation of chronic hepatitis B. South Med J 1996; 89: 1213-1216
  • 65 Toan NL, Song le H, Kremsner PG. et al. Co-infection of human parvovirus B19 in Vietnamese patients with hepatitis B virus infection. J Hepatol 2006; 45: 361-369
  • 66 Vento S, Garofano T, Renzini C. et al. Fulminant hepatitis associated with hepatitis A virus superinfection in patients with chronic hepatitis C. N Engl J Med 1998; 338: 286-290
  • 67 Duchini A, Viernes ME, Nyberg LM. et al. Hepatic decompensation in patients with cirrhosis during infection with influenza A. Arch Intern Med 2000; 160: 113-115
  • 68 Bal CK, Bhatia V, Kumar S. et al. Influenza A/H1/N1/09 infection in patients with cirrhosis has a poor outcome: a case series. Indian J Gastroenterol 2014; 33: 178-182
  • 69 Schutte A, Ciesek S, Wedemeyer H. et al. Influenza virus infection as precipitating event of acute-on-chronic liver failure. J Hepatol 2019; 70: 797-799
  • 70 Premkumar M, Devurgowda D, Dudha S. et al. A/H1N1/09 Influenza is Associated With High Mortality in Liver Cirrhosis. J Clin Exp Hepatol 2019; 9: 162-170
  • 71 Sarin SK, Choudhury A, Lau GK. et al. Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol Int 2020; 14: 690-700
  • 72 Iavarone M, D’Ambrosio R, Soria A. et al. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J Hepatol 2020; 73: 1063-1071
  • 73 Ioannou GN, Liang PS, Locke E. et al. Cirrhosis and Severe Acute Respiratory Syndrome Coronavirus 2 Infection in US Veterans: Risk of Infection, Hospitalization, Ventilation, and Mortality. Hepatology 2021; 74: 322-335
  • 74 Airola C, Andaloro S, Gasbarrini A. et al. Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines (Basel) 2024; 12
  • 75 Arguedas MR, Johnson A, Eloubeidi MA. et al. Immunogenicity of hepatitis A vaccination in decompensated cirrhotic patients. Hepatology 2001; 34: 28-31
  • 76 Gutierrez Domingo I, Pascasio Acevedo JM, Alcalde Vargas A. et al. Response to vaccination against hepatitis B virus with a schedule of four 40-mug doses in cirrhotic patients evaluated for liver transplantation: factors associated with a response. Transplant Proc 2012; 44: 1499-1501
  • 77 Aggeletopoulou I, Davoulou P, Konstantakis C. et al. Response to hepatitis B vaccination in patients with liver cirrhosis. Rev Med Virol 2017; 27
  • 78 Kim Y, Loucks J, Shah M. Efficacy of Hepatitis B Vaccine in Adults with Chronic Liver Disease. J Pharm Pract 2023; 36: 839-844
  • 79 Gaeta GB, Stornaiuolo G, Precone DF. et al. Immunogenicity and safety of an adjuvanted influenza vaccine in patients with decompensated cirrhosis. Vaccine 2002; 20: B33-35
  • 80 Iavarone M, Tosetti G, Facchetti F. et al. Spike-specific humoral and cellular immune responses after COVID-19 mRNA vaccination in patients with cirrhosis: A prospective single center study. Dig Liver Dis 2023; 55: 160-168
  • 81 McCashland TM, Preheim LC, Gentry MJ. Pneumococcal vaccine response in cirrhosis and liver transplantation. J Infect Dis 2000; 181: 757-760
  • 82 Roni DA, Pathapati RM, Kumar AS. et al. Safety and efficacy of hepatitis B vaccination in cirrhosis of liver. Adv Virol 2013; 2013: 196704
  • 83 Pirovino M, Lydick E, Grob PJ. et al. Pneumococcal vaccination: the response of patients with alcoholic liver cirrhosis. Hepatology 1984; 4: 946-949
  • 84 Harmala S, Parisinos CA, Shallcross L. et al. Effectiveness of influenza vaccines in adults with chronic liver disease: a systematic review and meta-analysis. BMJ Open 2019; 9: e031070
  • 85 Beran A, Mhanna A, Mhanna M. et al. Real-world effectiveness of COVID-19 vaccination in liver cirrhosis: a systematic review with meta-analysis of 51,834 patients. Proc (Bayl Univ Med Cent) 2023; 36: 151-156
  • 86 Liu J, MacNaughtan J, Kerbert AJC. et al. Clinical, experimental and pathophysiological effects of Yaq-001: a non-absorbable, gut-restricted adsorbent in models and patients with cirrhosis. Gut 2024; 73: 1183-1198
  • 87 Fernandez J, Acevedo J, Castro M. et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology 2012; 55: 1551-1561
  • 88 Horvath A, Leber B, Schmerboeck B. et al. Randomised clinical trial: the effects of a multispecies probiotic vs. placebo on innate immune function, bacterial translocation and gut permeability in patients with cirrhosis. Aliment Pharmacol Ther 2016; 44: 926-935
  • 89 Maslennikov R, Poluektova E, Zolnikova O. et al. Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis. Int J Mol Sci 2023; 24
  • 90 Ponziani FR, Zocco MA, Cerrito L. et al. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol 2018; 12: 641-656
  • 91 Litvak Y, Byndloss MX, Tsolis RM. et al. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 2017; 39: 1-6
  • 92 Arab JP, Martin-Mateos RM, Shah VH. Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatol Int 2018; 12: 24-33
  • 93 Tazi KA, Bieche I, Paradis V. et al. In vivo altered unfolded protein response and apoptosis in livers from lipopolysaccharide-challenged cirrhotic rats. J Hepatol 2007; 46: 1075-1088
  • 94 Tazi KA, Quioc JJ, Saada V. et al. Upregulation of TNF-alpha production signaling pathways in monocytes from patients with advanced cirrhosis: possible role of Akt and IRAK-M. J Hepatol 2006; 45: 280-289
  • 95 Coant N, Simon-Rudler M, Gustot T. et al. Glycogen synthase kinase 3 involvement in the excessive proinflammatory response to LPS in patients with decompensated cirrhosis. J Hepatol 2011; 55: 784-793
  • 96 Tritto G, Bechlis Z, Stadlbauer V. et al. Evidence of neutrophil functional defect despite inflammation in stable cirrhosis. J Hepatol 2011; 55: 574-581
  • 97 Rajkovic IA, Williams R. Abnormalities of neutrophil phagocytosis, intracellular killing and metabolic activity in alcoholic cirrhosis and hepatitis. Hepatology 1986; 6: 252-262
  • 98 Korf H, du Plessis J, van Pelt J. et al. Inhibition of glutamine synthetase in monocytes from patients with acute-on-chronic liver failure resuscitates their antibacterial and inflammatory capacity. Gut 2019; 68: 1872-1883
  • 99 Wherry EJ. T cell exhaustion. Nat Immunol 2011; 12: 492-499
  • 100 Doi H, Iyer TK, Carpenter E. et al. Dysfunctional B-cell activation in cirrhosis resulting from hepatitis C infection associated with disappearance of CD27-positive B-cell population. Hepatology 2012; 55: 709-719
  • 101 Basho K, Zoldan K, Schultheiss M. et al. IL-2 contributes to cirrhosis-associated immune dysfunction by impairing follicular T helper cells in advanced cirrhosis. J Hepatol 2021; 74: 649-660
  • 102 Xin G, Zander R, Schauder DM. et al. Single-cell RNA sequencing unveils an IL-10-producing helper subset that sustains humoral immunity during persistent infection. Nat Commun 2018; 9: 5037
  • 103 Lal G, Kulkarni N, Nakayama Y. et al. IL-10 from marginal zone precursor B cells controls the differentiation of Th17, Tfh and Tfr cells in transplantation tolerance. Immunol Lett 2016; 170: 52-63
  • 104 Guthmiller JJ, Graham AC, Zander RA. et al. Cutting Edge: IL-10 Is Essential for the Generation of Germinal Center B Cell Responses and Anti-Plasmodium Humoral Immunity. J Immunol 2017; 198: 617-622
  • 105 Gines P, Rimola A, Planas R. et al. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology 1990; 12: 716-724
  • 106 Moreau R, Elkrief L, Bureau C. et al. Effects of Long-term Norfloxacin Therapy in Patients With Advanced Cirrhosis. Gastroenterology 2018; 155: 1816-1827 e1819
  • 107 Bajaj JS, Heuman DM, Sanyal AJ. et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS One 2013; 8: e60042
  • 108 Pose E, Sola E, Lozano JJ. et al. Treatment With Simvastatin and Rifaximin Restores the Plasma Metabolomic Profile in Patients With Decompensated Cirrhosis. Hepatol Commun 2022; 6: 1100-1112
  • 109 Munoz L, Jose Borrero M, Ubeda M. et al. Interaction between intestinal dendritic cells and bacteria translocated from the gut in rats with cirrhosis. Hepatology 2012; 56: 1861-1869
  • 110 Agarwal B, Canizares RB, Saliba F. et al. Randomized, controlled clinical trial of the DIALIVE liver dialysis device versus standard of care in patients with acute-on- chronic liver failure. J Hepatol 2023; 79: 79-92
  • 111 Engelmann C, Herber A, Franke A. et al. Granulocyte-colony stimulating factor (G-CSF) to treat acute-on-chronic liver failure: A multicenter randomized trial (GRAFT study). J Hepatol 2021; 75: 1346-1354
  • 112 Bernsmeier C, Pop OT, Singanayagam A. et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK. Gastroenterology 2015; 148: 603-615 e614
  • 113 Wang X, Wong K, Ouyang W. et al. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb Perspect Biol 2019; 11
  • 114 Zhang M, Wan M, Wang W. et al. Effect of interferon therapy on quality of life in patients with chronic hepatitis B. Sci Rep 2024; 14: 2461
  • 115 Chen Y, Huang Y, Huang R. et al. Interleukin-10 gene intervention ameliorates liver fibrosis by enhancing the immune function of natural killer cells in liver tissue. Int Immunopharmacol 2024; 127: 111341
  • 116 Nelson DR, Lauwers GY, Lau JY. et al. Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C: a pilot trial of interferon nonresponders. Gastroenterology 2000; 118: 655-660
  • 117 Rose CF, Amodio P, Bajaj JS. et al. Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy. J Hepatol 2020; 73: 1526-1547