Synthesis
DOI: 10.1055/a-2338-9005
feature

Tandem [5,5]-/[3,3]-Rearrangements of Aryl Sulfoxides with Allyl Nitriles

Mengjie Hu
,
Liying Ru
,
Mengjiao Zhu
,
Shengwen Yang
,
Suojiang Fan
,
Jiangtao Ji
,
Dingming Zheng
,
Bo Peng
This work was supported by funding from the National Natural Science Foundation of China (22371261, 22071219). We also appreciate the support of Zhejiang Normal University.


Abstract

Tandem aromatic rearrangements represent a potent strategy for modulating the regioselectivity of a rearrangement process. In this article, we disclose two novel tandem aromatic rearrangements triggered by sulfonium [5,5]-rearrangement recently developed in our laboratory. Specifically, the [5,5]-rearrangement of aryl sulfoxides with allyl nitriles, followed by [3,3]-Cope rearrangement, forges a seamless tandem [5,5]-/[3,3]-rearrangement cascade, affording ortho-functionalized aryl sulfides. The other tandem process involves [5,5]-rearrangement of aryl sulfoxides with allyl nitriles, followed by nucleophilic addition/DDQ-oxidation-induced [3,3]-Cope rearrangement, eventually yielding meta-functionalized aryl sulfides. Both consecutive rearrangements enrich the repertoire of tandem aromatic rearrangement methodologies.

Supporting Information



Publication History

Received: 07 May 2024

Accepted after revision: 05 June 2024

Accepted Manuscript online:
05 June 2024

Article published online:
24 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Jones AC, May JA, Sarpong R, Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 2556
    • 1b Tejedor D, Méndez-Abt G, Cotos L, García-Tellado F. Chem. Soc. Rev. 2013; 42: 458
    • 1c Majumdar KC, Alam S, Chattopadhyay B. Tetrahedron 2008; 64: 597
    • 1d Martín Castro AM. Chem. Rev. 2004; 104: 2939
    • 1e Ito H, Taguchi T. Chem. Soc. Rev. 1999; 28: 43
    • 2a Barriault L, Sow B, Sherburn MS. Consecutive Sigmatropic Rearrangements . In Comprehensive Organic Synthesis II . Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 978
    • 2b Davies HM. L, Lian Y. Acc. Chem. Res. 2012; 45: 923
    • 3a Ryan JP, O’Connor PR. J. Am. Chem. Soc. 1952; 74: 5866
    • 3b Maruoka K, Sato J, Banno H, Yamamoto H. Tetrahedron Lett. 1990; 31: 377
    • 3c Guz NR, Lorenz P, Stermitz FR. Tetrahedron Lett. 2001; 42: 6491
    • 3d Lin Y.-L, Cheng J.-Y, Chu Y.-H. Tetrahedron Lett. 2007; 63: 10949
    • 3e Okada Y, Imanari D. Int. J. Org. Chem. 2012; 2: 38
    • 3f Abe T, Kosaka Y, Asano M, Harasawa N, Mishina A, Nagasue M, Sugimoto Y, Katakawa K, Sueki S, Anada M, Yamada K. Org. Lett. 2019; 21: 826
    • 3g Hui Z, Jiang SW, Qi X, Ye X.-Y, Xie T. Tetrahedron Lett. 2020; 61: 151995
    • 4a Lei XG, Dai MJ, Hua ZH, Danishefsky SJ. Tetrahedron Lett. 2008; 49: 6383
    • 4b Plummer CW, Wei CS, Yozwiak CE, Soheili A, Smithback SO, Leighton JL. J. Am. Chem. Soc. 2014; 136: 9878
    • 4c Homer JA, Silvestro ID, Matheson EJ, Stuart JT, Lawrence AL. Org. Lett. 2021; 23: 3248
    • 4d Salahi F, Yao CB, Norton JR, Snyder SA. Nat. Synth. 2022; 1: 313
  • 5 Wang L, Zhou Y, Su Z, Zhang F, Cao W, Liu X, Feng X. Angew. Chem. Int. Ed. 2022; 61: e202211785
  • 6 Modern Arene Chemistry . Astruc D. Wiley-VCH; Weinheim: 2002
    • 7a Perry GJ. P, Yorimitsu H. ACS Sustainable Chem. Eng. 2022; 10: 2569
    • 7b Yorimitsu H, Perry GJ. Proc. Jpn. Acad., Ser. B 2022; 98: 190
    • 7c Liang Y, Peng B. Acc. Chem. Res. 2022; 55: 2103
    • 7d Higuchi K, Tayu M. Heterocycles 2021; 102: 783
    • 7e Zhang L, Hu M, Peng B. Synlett 2019; 30: 2203
    • 7f Zhen H, Pulis AP, Perry GJ, Procter DJ. Phosphorus, Sulfur Silicon Relat. Elem. 2019; 194: 669
    • 7g Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 7h Yanagi T, Nogi K, Yorimitsu H. Tetrahedron Lett. 2018; 59: 2951
    • 7i Yorimitsu H. Chem. Rec. 2017; 17: 1156
    • 7j Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 9842
    • 8a Shang L, Chang Y, Luo F, He J.-N, Huang X, Zhang L, Kong L, Li K, Peng B. J. Am. Chem. Soc. 2017; 139: 4211
    • 8b Luo F, Lu Y, Hu M, Tian J, Zhang L, Bao W, Yan C, Huang X, Wang Z.-X, Peng B. Org. Chem. Front. 2018; 5: 1756
    • 8c Zhang L, He J.-N, Liang Y, Hu M, Shang L, Huang X, Kong L, Wang Z.-X, Peng B. Angew. Chem. Int. Ed. 2019; 58: 5316
    • 8d Zhao W, Huang X, Zhan Y, Zhang Q, Li D, Zhang Y, Kong L, Peng B. Angew. Chem. Int. Ed. 2019; 58: 17210
    • 8e Hu M, He J.-N, Liu Y, Dong T, Chen M, Yan C, Ye Y, Peng B. Eur. J. Org. Chem. 2020; 193
    • 8f Huang X, Zhang Y, Liang W, Zhang Q, Zhan Y, Kong L, Peng B. Chem. Sci. 2020; 11: 3048
    • 8g Huang X, Zhao W, Liang Y, Wang M, Zhan Y, Zhang Y, Kong L, Wang Z.-X, Peng B. Org. Chem. Front. 2021; 8: 1280
    • 8h Chen M, Liang Y, Dong T, Liang W, Liu Y, Zhang Y, Huang X, Kong L, Wang Z.-X, Peng B. Angew. Chem. Int. Ed. 2021; 60: 2339
    • 8i Hu M, Liu Y, Liang Y, Dong T, Kong L, Bao M, Wang Z.-X, Peng B. Nat. Commun. 2022; 13: 4719
    • 8j Hu M, Liang Y, Ru L, Ye S, Zhang L, Huang X, Bao M, Kong L, Peng B. Angew. Chem. Int. Ed. 2023; 62: e202306914
    • 8k Hu M, Zhu M, Ru L, Ji J, Bao M, Peng B. Helv. Chim. Acta 2023; 106: e202300149
    • 9a Eberhart AJ, Imbriglio JE, Procter DJ. Org. Lett. 2011; 13: 5882
    • 9b Huang X, Maulide N. J. Am. Chem. Soc. 2011; 133: 8510
    • 9c Eberhart AJ, Procter DJ. Angew. Chem. Int. Ed. 2013; 52: 4008
    • 9d Eberhart AJ, Cicoira C, Procter DJ. Org. Lett. 2013; 15: 3994
    • 9e Huang X, Patil M, Farѐs C, Thiel W, Maulide N. J. Am. Chem. Soc. 2013; 135: 7312
    • 9f Fernández-Salas JA, Eberhart AJ, Procter DJ. J. Am. Chem. Soc. 2016; 138: 790
    • 9g Eberhart AJ, Shrives H, Zhang Y, Carrër A, Parry AV. S, Tate DJ, Turner ML, Procter DJ. Chem. Sci. 2016; 7: 1281
    • 9h Yanagi T, Otsuka S, Kasuga Y, Fujimoto K, Murakami K, Nogi K, Yorimitsu H, Osuka A. J. Am. Chem. Soc. 2016; 138: 14582
    • 9i Shrives HJ, Fernández-Salas JA, Hedtke C, Pulis AP, Procter DJ. Nat. Commun. 2017; 8: 14801
    • 9j Yang K, Pulis AP, Perry GJ. P, Procter DJ. Org. Lett. 2018; 20: 7498
    • 9k He Z, Shrives HJ, Fernández-Salas JA, Abengózar A, Neufeld J, Yang K, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 5759
    • 9l Šiaučiulis M, Sapmaz S, Pulis AP, Procter DJ. Chem. Sci. 2018; 9: 754
    • 9m Bisht R, Popescu MV, He Z, Ibrahim AM, Crisenza GE. M, Paton RS, Procter DJ. Angew. Chem. Int. Ed. 2023; 62: e202302418
    • 10a Schneider C, Weise CF. Cope, Oxy-Cope, and Anionic Oxy-Cope Rearrangements . In Comprehensive Organic Synthesis II . Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 867
    • 10b Tomiczek BM, Grenning AJ. Org. Biomol. Chem. 2021; 19: 2385
    • 10c Lutz RP. Chem. Rev. 1984; 84: 205