Synlett
DOI: 10.1055/a-2337-2498
account

Cyclization via Metal-Catalyzed Hydrogen Atom Transfer/Radical-Polar Crossover

This work was supported by the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research (KAKENHI) (23H01968), the Naito Foundation, and the Chugai Foundation for Innovative Drug Discovery Science.


Dedicated to Professor K. Peter C. Vollhardt in recognition of his invaluable contributions to the field of organic chemistry and his pioneering role in the development and success of Synlett.

Abstract

Catalytic transformations of alkenes via the metal-hydride hydrogen atom transfer (MHAT) mechanism have notably advanced synthetic organic chemistry. This Account focuses on MHAT/radical-polar crossover (MHAT/RPC) conditions, offering a novel perspective on generating electrophilic intermediates and facilitating various intramolecular reactions. On using cobalt hydrides, the MHAT mechanism displays exceptional chemoselectivity and functional group tolerance, making it invaluable for the construction of complex biologically relevant molecules under mild conditions. Recent developments have enhanced regioselectivity and expanded the scope of MHAT-type reactions, enabling the formation of cyclic molecules via hydroalkoxylation, hydroacyloxylation, and hydroamination. Notably, the addition of an oxidant to traditional MHAT systems enables the synthesis of rare cationic alkylcobalt(IV) complexes, bridging radical mechanisms to ionic reaction systems. This Account culminates with examples of natural product syntheses and an exploration of asymmetric intramolecular hydroalkoxylations, highlighting the ongoing challenges and opportunities for future research to achieve higher enantioselectivity. This comprehensive study revisits the historical evolution of the MHAT mechanism and provides a groundwork for further innovations on the synthesis of structurally diverse and complex natural products.

1 Introduction

2 Intramolecular Hydroalkoxylation and Hydroacyloxylation Reactions

3 Intramolecular Hydroamination Reactions

4 Intramolecular Hydroarylation Reactions

5 Deprotective Cyclization

6 Asymmetric Intramolecular Hydroalkoxylation

7 Conclusion



Publication History

Received: 15 May 2024

Accepted after revision: 03 June 2024

Accepted Manuscript online:
03 June 2024

Article published online:
14 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Crossley SW, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 1b Shevick SL, Wilson CV, Kotesova S, Kim D, Holland PL, Shenvi RA. Chem. Sci. 2020; 11: 12401
  • 3 Feder HM, Halpern J. J. Am. Chem. Soc. 1975; 97: 7186
  • 4 Sweany RL, Halpern J. J. Am. Chem. Soc. 1977; 99: 8335
  • 5 Isayama S, Mukaiyama T. Chem. Lett. 1989; 18: 1071
  • 6 Tokuyasu T, Kunikawa S, Masuyama A, Nojima M. Org. Lett. 2002; 4: 3595
  • 7 Zombeck A, Hamilton DE, Drago RS. J. Am. Chem. Soc. 1982; 104: 6782
    • 8a Iwasaki K, Wan KK, Oppedisano A, Crossley SW. M, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 1300
    • 8b Crossley SW. M, Barabé F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
    • 9a Eisenberg DC, Norton JR. Isr. J. Chem. 1991; 31: 55
    • 9b Choi J, Tang L, Norton JR. J. Am. Chem. Soc. 2007; 129: 234
    • 9c Kuo JL, Hartung J, Han A, Norton JR. J. Am. Chem. Soc. 2015; 137: 1036
    • 10a Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. J. Am. Chem. Soc. 2009; 131: 4904
    • 10b Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
  • 12 Shenvi RA, Matos JL. M, Green SA. Hydrofunctionalization of Alkenes by Hydrogen-Atom Transfer . In Organic Reactions, Vol. 100. Denmark SE. John Wiley & Sons; Hoboken: 2019: 383-470
    • 13a Waser J, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 4099
    • 13b Waser J, Carreira EM. J. Am. Chem. Soc. 2004; 126: 5676
    • 13c Waser J, Nambu H, Carreira EM. J. Am. Chem. Soc. 2005; 127: 8294
    • 13d Waser J, González-Gómez JC, Nambu H, Huber P, Carreira EM. Org. Lett. 2005; 7: 4249
    • 13e Waser J, Gaspar B, Nambu H, Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693
    • 13f Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
    • 13g Carreira E, Gaspar B, Waser J. Synthesis 2007; 3839
    • 13h Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 5758
    • 13i Gaspar B, Carreira EM. J. Am. Chem. Soc. 2009; 131: 13214
  • 14 Shigehisa H, Aoki T, Yamaguchi S, Shimizu N, Hiroya K. J. Am. Chem. Soc. 2013; 135: 10306
  • 15 Wilson CV, Holland PL. J. Am. Chem. Soc. 2024; 146: 2685
  • 16 Wilson CV, Kim D, Sharma A, Hooper RX, Poli R, Hoffman BM, Holland PL. J. Am. Chem. Soc. 2022; 144: 10361
  • 17 Shigehisa H, Hayashi M, Ohkawa H, Suzuki T, Okayasu H, Mukai M, Yamazaki A, Kawai R, Kikuchi H, Satoh Y, Fukuyama A, Hiroya K. J. Am. Chem. Soc. 2016; 138: 10597
  • 18 Osato A, Fujihara T, Shigehisa H. ACS Catal. 2023; 13: 4101
    • 19a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 19b Lovering F. MedChemComm 2013; 4: 515
  • 20 Shigehisa H, Koseki N, Shimizu N, Fujisawa M, Niitsu M, Hiroya K. J. Am. Chem. Soc. 2014; 136: 13534
  • 21 Ohuchi S, Koyama H, Shigehisa H. ACS Catal. 2021; 11: 900
  • 22 Shigehisa H, Ano T, Honma H, Ebisawa K, Hiroya K. Org. Lett. 2016; 18: 3622
  • 23 Nagai T, Mimata N, Terada Y, Sebe C, Shigehisa H. Org. Lett. 2020; 22: 5522
  • 24 Mimata N, Shigehisa H. Tetrahedron Lett. 2024; 135: 154890
  • 25 Date S, Hamasaki K, Sunagawa K, Koyama H, Sebe C, Hiroya K, Shigehisa H. ACS Catal. 2020; 10: 2039
  • 26 Discolo CA, Touney EE, Pronin SV. J. Am. Chem. Soc. 2019; 141: 17527
  • 27 Ebisawa K, Izumi K, Ooka Y, Kato H, Kanazawa S, Komatsu S, Nishi E, Shigehisa H. J. Am. Chem. Soc. 2020; 142: 13481
  • 28 Touney EE, Foy NJ, Pronin SV. J. Am. Chem. Soc. 2018; 140: 16982
  • 29 Zhou XL, Yang F, Sun HL, Yin YN, Ye WT, Zhu R. J. Am. Chem. Soc. 2019; 141: 7250
  • 30 Yin Y.-N, Ding R.-Q, Ouyang D.-C, Zhang Q, Zhu R. Nat. Commun. 2021; 12: 2552
  • 31 Nakagawa M, Matsuki Y, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2022; 144: 7953
    • 32a Park SH, Jang J, Shin K, Kim H. ACS Catal. 2022; 12: 10572
    • 32b Park SH, Bae G, Choi A, Shin S, Shin K, Choi CH, Kim H. J. Am. Chem. Soc. 2023; 145: 15360
  • 33 Xu G, Elkin M, Tantillo DJ, Newhouse TR, Maimone TJ. Angew. Chem. Int. Ed. 2017; 56: 12498
    • 34a Vrubliauskas D, Vanderwal CD. Angew. Chem. Int. Ed. 2020; 59: 6115
    • 34b Vrubliauskas D, Gross BM, Vanderwal CD. J. Am. Chem. Soc. 2021; 143: 2944
  • 35 Zhao Y, Hu J, Chen R, Xiong F, Xie H, Ding H. J. Am. Chem. Soc. 2022; 144: 2495