Synthesis
DOI: 10.1055/a-2335-8627
short review

Progress in Photocatalyzed Trifluoromethylthiolation and Trifluoromethylselenolation Reactions

Fei Li
,
Jia-Wei Song
,
Xue Han
,
We thank Wuhan University of Technology and the Natural Science Foundation of Shandong Province (China) (ZR2021MB138) for financial support.


Abstract

The trifluoromethylthio (SCF3) and trifluoromethylselanyl (SeCF3) groups possess high electron-withdrawing ability, excellent lipophilicity, good stability, and bioavailability, and they are promising structural motifs in drug design and development. Photoredox catalysis has clear benefits; it is a mild and sustainable methodology for the modification of chemical structures that enables a variety of chemical reactions that are unattainable using classical ionic chemistry. This review focuses on light-initiated trifluoromethylthiolation and trifluoromethylselenolation reactions with diverse SCF3 and SeCF3 reagents. Representative transformations either using photocatalysts or through EDA complexes, as well as possible reaction mechanisms, are all discussed in this article.

1 Introduction

2 Photocatalyzed Trifluoromethylthiolation

2.1 Photocatalyzed Trifluoromethylthiolation with MSCF3 (M = H, [Me4N], Ag)

2.2 Photocatalyzed Trifluoromethylthiolation with XSCF3 (X = Cl, CF3S)

2.3 Photocatalyzed Trifluoromethylthiolation with ArSO2SCF3

2.4 Photocatalyzed Trifluoromethylthiolation with N–SCF3 Reagents

2.5 Photocatalyzed Trifluoromethylthiolation with Other Reagents

3 Photocatalyzed Trifluoromethylselenolation

3.1 Photocatalyzed Trifluoromethylselenolation with [Me4N][SeCF3]

3.2 Photocatalyzed Trifluoromethylselenolation with ArSO2SeCF3

4 Summary



Publication History

Received: 26 April 2024

Accepted after revision: 29 May 2024

Accepted Manuscript online:
29 May 2024

Article published online:
18 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected books:
    • 1a Modern Synthesis Processes and Reactivity of Fluorinated Compounds. In Progress in Fluorine Science Series. Groult H, Leroux FR, Tressaud A. Elsevier; Amsterdam: 2017
    • 1b Organofluorine Chemistry: Synthesis, Modeling, and Applications. Szabó KJ, Selander N. Wiley-VCH; Weinheim: 2021
    • 1c Fascinating Fluoropolymers and Their Applications. In Progress in Fluorine Science Series. Ameduri B, Fomin S. Elsevier; Amsterdam: 2020

      Selected reviews:
    • 2a Grygorenko OO, Melnykov KP, Holovach S, Demchuk O. ChemMedChem 2022; 17: e202200365
    • 2b Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Chem. Rev. 2022; 122: 167
    • 2c Miller MA, Sletten EM. ChemBioChem 2020; 21: 3451
    • 2d Lv J, Cheng Y. Chem. Soc. Rev. 2021; 50: 5435
    • 2e Wang Y, Ming X.-X, Zhang C.-P. Curr. Med. Chem. 2020; 27: 5599
    • 3a Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
    • 3b Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 3c Block E, Booker S, Flores-Penalba S, George G, Gundala S, Landgraf B, Liu J, Lodge S, Pushie J, Rozovsky S, Vattekkatte A, Yaghi R, Zeng H. ChemBioChem 2016; 17: 1738
    • 3d Han Z.-Z, Dong T, Ming X.-X, Kuang F, Zhang C.-P. ChemMedChem 2021; 16: 3177
    • 3e Ghiazza C, Billard T, Dickson C, Tlili A, Gampe C. ChemMedChem 2019; 14: 1586
    • 3f He X, Zhong M, Li S, Li X, Li Y, Li Z, Gao Y, Ding F, Wen D, Lei Y, Zhang Y. Eur. J. Med. Chem. 2020; 208: 112864
    • 3g He X, Zhong M, Li S, Li X, Li Y, Li Z, Gao Y, Ding F, Wen D, Lei Y, Zhang Y. Eur. J. Med. Chem. 2021; 218: 113384
    • 3h Dong L, Chang W, Yang W, Xu Z, Cheng J, Shao X, Xu X, Li Z. J. Agric. Food Chem. 2023; 71: 11396
    • 4a Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
    • 4b Grollier K, De Zordo-Banliat A, Bourdreux F, Pegot B, Dagousset G, Magnier E, Billard T. Chem. Eur. J. 2021; 27: 6028

      Selected reviews:
    • 5a Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
    • 5b Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 5c Wang S.-M, Han J.-B, Zhang C.-P, Qin H.-L, Xiao J.-C. Tetrahedron 2015; 71: 7949
    • 5d Zhang X.-Y, Li P.-H, Shi M. Asian J. Org. Chem. 2018; 7: 1924
    • 5e Zhang F.-G, Wang X.-Q, Zhou Y, Shi H.-S, Feng Z, Ma J.-A, Marek I. Chem. Eur. J. 2020; 26: 15378
    • 5f Liu L, Gu Y.-C, Zhang C.-P. Chem. Rec. 2023; 23: e202300071
    • 5g Kordnezhadian R, Li B.-Y, Zogu A, Demaerel J, De Borggraeve WM, Ismalaj E. Chem. Eur. J. 2022; 28: e202201491
    • 5h Han Z.-Z, Zhang C.-P. Adv. Synth. Catal. 2020; 362: 4256
    • 5i Wu S, Song H.-X, Zhang C.-P. Chem. Asian J. 2020; 15: 1660
    • 6a Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2014: 2415
    • 6b Shen Q. J. Org. Chem. 2023; 88: 3359
    • 6c Lin J.-H, Xiao J.-C. Acc. Chem. Res. 2020; 53: 1498
    • 6d Yang X.-H, Chang D, Zhao R, Shi L. Asian J. Org. Chem. 2021; 10: 61
    • 6e Wang X, Wang Z, Li Z, Sun K. Chin. Chem. Lett. 2023; 34: 108045
    • 6f Zhang C. J. Chin. Chem. Soc. 2017; 64: 457
    • 6g Cao Y, Ahmadi R, Heravi MR. P, Issakhov A, Ebadi AG, Vessally E. RSC Adv. 2021; 11: 39593

      Selected reviews:
    • 7a Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
    • 7b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 7c Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 8a Patra T, Mukherjee S, Ma J, Strieth-Kalthoff F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 10514
    • 8b Xuan J, He X.-K, Xiao W.-J. Chem. Soc. Rev. 2020; 49: 2546
    • 8c Cheng Y.-Z, Feng Z, Zhang X, You S.-L. Chem. Soc. Rev. 2022; 51: 2145
    • 8d Kwon K, Simons RT, Nandakumar M, Roizen JL. Chem. Rev 2022; 122: 2353
    • 8e Huang H.-M, Bellotti P, Glorius F. Acc. Chem. Res. 2022; 55: 1135
    • 8f Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
    • 8g Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Chem. Rev. 2022; 122: 2907
    • 9a Lantaño B, Postigo A. Org. Biomol. Chem. 2017; 15: 9954
    • 9b Barata-Vallejo S, Cooke MV, Postigo A. ACS Catal. 2018; 8: 7287
    • 9c Lemos A, Lemaire C, Luxen A. Adv. Synth. Catal. 2019; 361: 1500
    • 9d Yakubov S, Barham JP. Beilstein J. Org. Chem. 2020; 16: 2151
    • 9e Ka CH, Kim S, Cho EJ. Chem. Rec. 2023; 23: e202300036
    • 9f Levin VV, Dilman AD. Chem. Rec. 2023; 23: e202300038
    • 9g Barthelemy A.-L, Magnier E, Dagousset G. Synthesis 2018; 50: 4765
    • 9h Louvel D, Ghiazza C, Debrauwer V, Khrouz L, Monnereau C, Tlili A. Chem. Rec. 2021; 21: 417
    • 9i Ghiazza C, Monnereau C, Khrouz L, Médebielle M, Billard T, Tlili A. Synlett 2019; 30: 777
    • 10a Billard T, Langlois BR. Tetrahedron Lett. 1996; 37: 6865
    • 10b Billard T, Large S, Langlois BR. Tetrahedron Lett. 1997; 38: 65
    • 10c Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
    • 10d Xu C, Wang S, Shen Q. ACS Sustainable Chem. Eng. 2022; 10: 6889
    • 10e Fichez J, Dupommier D, Besset T. Synthesis 2022; 54: 3761
    • 10f Huang Y, Zhang M, Lin Q, Weng Z. Synlett 2021; 32: 109
    • 10g Barata-Vallejo S, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 7150
    • 10h Guo Y, Huang M.-W, Fu X.-L, Liu C, Chen Q.-Y, Zhao Z.-G, Zeng B.-Z, Chen J. Chin. Chem. Lett. 2017; 28: 719
    • 10i Rossi S, Puglisi A, Raimondi L, Benaglia M. ChemCatChem 2018; 10: 2717
    • 10j Lin Y.-M, Jiang L.-Q, Yi W.-B. Asian J. Org. Chem. 2019; 8: 627
    • 10k Hardy MA, Chachignon H, Cahard D. Asian J. Org. Chem. 2019; 8: 591
    • 11a Tlili A, Ismalaj E, Glenadel Q, Ghiazza C, Billard T. Chem. Eur. J. 2018; 24: 3659
    • 11b Ghiazza C, Tlili A. Beilstein J. Org. Chem. 2020; 16: 305
    • 11c Wang H.-N, Dong J.-Y, Shi J, Zhang C.-P. Tetrahedron 2021; 99: 132476
    • 11d Wang Y, Ye Z, Zhang H, Yuan Z. Adv. Synth. Catal. 2021; 363: 1835
    • 11e Gao Y, Xiao R, Zhang S, Wang Y, Yuan Z. Eur. J. Org. Chem. 2023; 2023: e202300668
    • 11f Cao Y, Xu N.-Y, Issakhov A, Ebadi AG, Heravi MR. P, Vessally E. J. Fluorine Chem. 2021; 252: 109901
  • 12 Harris JF. Jr, Stacey FW. J. Am. Chem. Soc. 1961; 83: 840
    • 13a Harris JF. Jr. J. Org. Chem. 1972; 37: 1340
    • 13b Harris JF. Jr. J. Org. Chem. 1967; 32: 2063
  • 14 He J, Chen C, Fu GC, Peters JC. ACS Catal. 2018; 8: 11741
  • 15 Gravatt CS, Johannes JW, King ER, Ghosh A. J. Org. Chem. 2022; 87: 8921
  • 16 King ER, Tarrago M, Ghosh A. Catal. Sci. Technol. 2023; 13: 7059
  • 17 Harris JF. Jr. J. Am. Chem. Soc. 1962; 84: 3148
  • 18 Harris JF. Jr. J. Org. Chem. 1966; 31: 931
    • 19a Munavalli S, Rossman DI, Rohrbaugh DK, Durst HD. J. Fluorine Chem. 1998; 89: 189
    • 19b Munavalli S, Rossman DI, Rohrbaugh DK, Durst HD. Phosphorus, Sulfur Silicon Relat. Elem. 2002; 177: 2471
    • 20a Haran G, Sharp DW. A. J. Chem. Soc., Perkin Trans. 1 1972; 34
    • 20b Dear RE. A, Gilbert EE. J. Fluorine Chem. 1974; 4: 107
  • 21 Koziakov D, Majek M, von Wangelin AJ. Eur. J. Org. Chem. 2017; 2017: 6722
  • 22 Barday M, Blieck R, Ruyet L, Besset T. Tetrahedron 2020; 76: 131153
  • 23 Petit-Cancelier F, Ruyet L, Couve-Bonnaire S, Besset T. Adv. Synth. Catal. 2022; 364: 1498
  • 24 Shan X, Wang X, Chen E, Liu J, Lu K, Zhao X. J. Org. Chem. 2023; 88: 319
  • 25 Wang M.-Y, Zhu X.-Q, Zhang X.-L, Guo R.-L, Jia Q, Wang Y.-Q. Org. Biomol. Chem. 2020; 18: 5918
  • 26 Li A, Li Y, Liu J, Chen J, Lu K, Qiu D, Fagnoni M, Protti S, Zhao X. J. Org. Chem. 2021; 86: 1292
  • 27 Zhao X, Zheng X, Tian M, Tong Y, Yang B, Wei X, Qiu D, Lu K. Org. Chem. Front. 2018; 5: 2636
  • 28 Ghiazza C, Monnereau C, Khrouz L, Billard T, Tlili A. Synthesis 2019; 51: 2865
  • 29 Wu Z, Xu Y, Liu J, Wu X, Zhu C. Sci. China Chem. 2020; 63: 1025
  • 30 Liu J, Yao H, Li X, Wu H, Lin A, Yao H, Xu J, Xu S. Org. Chem. Front. 2020; 7: 1314
  • 31 Honeker R, Garza-Sanchez RA, Hopkinson MN, Glorius F. Chem. Eur. J. 2016; 22: 4395
  • 32 Li X, Zhang Q, Zhang W, Ma J, Wang Y, Pan Y. Beilstein J. Org. Chem. 2021; 17: 551
  • 33 Zhang Q, Li X, Zhang W, Wang Y, Pan Y. Org. Lett. 2021; 23: 5410
  • 34 Ghosh KG, Das D, Garai S, Chandu P, Sureshkumar D. J. Org. Chem. 2022; 87: 8611
  • 35 Song Y, Jiang Z, Zhu Y, Sun T.-Y, Xia X.-F, Wang D. Org. Chem. Front. 2023; 10: 5284
  • 36 Zhang C, Wang Y, Song Y, Gao H, Sun Y, Sun X, Yang Y, He M, Yang Z, Zhan L, Yu Z.-X, Rao Y. CCS Chem. 2019; 1: 352
  • 37 Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F. J. Am. Chem. Soc. 2016; 138: 16200
  • 38 Zhang H, Wang Q, Wang Y, Yuan Z, Gao F, Britto R. Asian J. Org. Chem. 2021; 10: 2566
  • 39 Doche F, Poisson T, Besset T. ACS Catal. 2023; 13: 14112
  • 40 Xu W, Ma J, Yuan X.-A, Dai J, Xie J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 10357
  • 41 Schirmer TE, Rolka AB, Karl TA, Holzhausen F, König B. Org. Lett. 2021; 23: 5729
  • 42 Mukherjee S, Patra T, Glorius F. ACS Catal. 2018; 8: 5842
  • 43 Wang X, Dong J, Liu Y, Song H, Wang Q. Chin. Chem. Lett. 2021; 32: 3027
  • 44 Lipp A, Badir SO, Dykstra R, Gutierrez O, Molander GA. Adv. Synth. Catal. 2021; 363: 3507
  • 45 Liu Y, Zhang Z, Wei Z, Zhong Z, Liu S, Yang Y, Zeng X. New J. Chem. 2023; 47: 7369
  • 46 Ji T, Chen X.-Y, Huang L, Rueping M. Org. Lett. 2020; 22: 2579
  • 47 Candish L, Pitzer L, Gûmez-Suárez A, Glorius F. Chem. Eur. J. 2016; 22: 4753
  • 48 Dagousset G, Simon C, Anselmi E, Tuccio B, Billard T, Magnier E. Chem. Eur. J. 2017; 23: 4282
  • 49 Zhu M, Li R, You Q, Fu W, Guo W. Asian J. Org. Chem. 2019; 8: 2002
  • 50 Zhu M, Fu W, Guo W, Tian Y, Wang Z, Ji B. Org. Biomol. Chem. 2019; 17: 3374
  • 51 Fang J, Wang Z.-K, Wu S.-W, Shen W.-G, Ao G.-Z, Liu F. Chem. Commun. 2017; 53: 7638
  • 52 Ye Z, Lei Z, Ye X, Zhou L, Wang Y, Yuan Z, Gao F, Britton R. J. Org. Chem. 2022; 87: 765
  • 53 Li Y, Koike T, Akita M. Asian J. Org. Chem. 2017; 6: 445
  • 54 Yang Y, Tang R, Abid S, Khrouz L, Vantourout JC, Tlili A. Eur. J. Org. Chem. 2023; 2023: e202300619
  • 55 Billard T, Roques N, Langlois BR. J. Org. Chem. 1999; 64: 3813
  • 56 Liang S, Wei J, Jiang L, Liu J, Mumtaz Y, Yi W. CCS Chem. 2021; 3: 265
  • 57 Chen F, Jiang L, Hu C, Liu J, Yi W. Sci. China Chem. 2024; 67: 587
    • 58a Soni S, Pali P, Ansari MA, Singh MS. J. Org. Chem. 2020; 85: 10098
    • 58b Prabhakar NS, Kumar S, Gupta PK, Singh KN. J. Org. Chem. 2022; 87: 11112
  • 59 Ouyang Y, Xu X.-H, Qing F.-L. Angew. Chem. Int. Ed. 2019; 58: 18508
  • 60 Wei Z, Lou Z, Ni C, Zhang W, Hu J. Chem. Commun. 2022; 58: 10024
  • 61 Zhang Z, Tian Y, Li X, Wang Z, Liu R, Chen P, Li X, Dai J, Shi D. Green Chem. 2023; 25: 2723
    • 62a Gao Y, Xiao R, Feng B, Bian Z, Zhang H, Zhu G, Wang Y, Yuan Z. Org. Chem. Front. 2023; 10: 4905
    • 62b Wang J, Lu X.-X, Yang R.-P, Zhang B.-B, Xiang Z.-H, Li J.-C, Liu L, Chao S, Shang X. Org. Lett. 2023; 25: 8489
    • 62c Xia Y, Studer A. Angew. Chem. Int. Ed. 2019; 58: 9836
  • 63 Han Q.-Y, Tan K.-L, Wang H.-N, Zhang C.-P. Org. Lett. 2019; 21: 10013
  • 64 Liu L, Gu Y.-C, Zhang C.-P. J. Org. Chem. 2023; 88: 9372
  • 65 Han Q.-Y, Zhao C.-L, Dong T, Shi J, Tan K.-L, Zhang C.-P. Org. Chem. Front. 2019; 6: 2732
  • 66 De Zordo-Banliat A, Barthélémy L, Bourdreux F, Tuccio B, Dagousset G, Pégot B, Magnier E. Eur. J. Org. Chem. 2020; 2020: 506

    • Selected reviews:
    • 67a Tian Z.-Y, Hu Y.-T, Teng H.-B, Zhang C.-P. Tetrahedron Lett. 2018; 59: 299
    • 67b Yorimitsu H. Chem. Rec. 2021; 21: 3356
    • 67c Berger F, Ritter T. Synlett 2022; 33: 339
    • 67d Tian Z.-Y, Ma Y, Zhang C.-P. Synthesis 2022; 54: 1478
    • 67e van Dalsen L, Brown RE, Rossi-Ashton JA, Procter DJ. Angew. Chem. Int. Ed. 2023; 62: e202303104
  • 68 Tian Z.-Y, Zhang C.-P. Org. Chem. Front. 2022; 9: 2220
  • 69 Li F, Han X, Xu Z, Zhang C.-P. Org. Lett. 2023; 25: 7884
  • 70 Glenadel Q, Ghiazza C, Tlili A, Billard T. Adv. Synth. Catal. 2017; 359: 3414
  • 71 Ghiazza C, Debrauwer V, Monnereau C, Khrouz L, Médebielle M, Billard T, Tlili A. Angew. Chem. Int. Ed. 2018; 57: 11781
  • 72 Ghiazza C, Khrouz L, Monnereau C, Billard T, Tlili A. Chem. Commun. 2018; 54: 9909
  • 73 Ghiazza C, Khrouz L, Billard T, Monnereau C, Tlili A. Eur. J. Org. Chem. 2020; 2020: 1559
  • 74 Lu L, Zhao X, Dessie W, Xia X, Duan X, He J, Wang R, Liu Y, Wu C. Org. Biomol. Chem. 2022; 20: 1754
  • 75 Zhang Q, Yuan W, Shi Y, Pan F. Tetrahedron Lett. 2022; 98: 153787