Synthesis
DOI: 10.1055/a-2335-8566
paper
Special Topic Dedicated to Prof. H. Ila

Ring-Opening of Donor-Acceptor Cyclopropane Diester for the Synthesis of Oxime Esters and 2,3-Dihydroazete Ester

Neeraj Yadav
a   Lab No. 406, Department of Chemistry, Indian Institute ofTechnology Ropar, Rupnagar, Punjab 140001, India
,
Kritika Verma
a   Lab No. 406, Department of Chemistry, Indian Institute ofTechnology Ropar, Rupnagar, Punjab 140001, India
,
Arnab Das
b   Department of Chemistry, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
,
Navpreet Kaur
a   Lab No. 406, Department of Chemistry, Indian Institute ofTechnology Ropar, Rupnagar, Punjab 140001, India
,
a   Lab No. 406, Department of Chemistry, Indian Institute ofTechnology Ropar, Rupnagar, Punjab 140001, India
› Author Affiliations
We gratefully acknowledge the financial support from the Department of Science & Technology, India (DST, CRG/2022/006407) and the Council of Scientific & Industrial Research, India (CSIR).


Abstract

A simple and efficient approach for the synthesis of privileged oxime esters by employing donor-acceptor cyclopropane diesters (DACs) as one of the potential precursors is reported. The strategy involves Lewis acid catalyzed ring-opening of DACs, resulting in an open-chain intermediate followed by the base-mediated construction of the corresponding oxime esters in a one-pot reaction. Moreover, the process also features the synthesis of diethyl 4-(4-methoxyphenyl)azete-2,2(3H)-dicarboxylate.

Supporting Information



Publication History

Received: 24 April 2024

Accepted after revision: 29 May 2024

Accepted Manuscript online:
29 May 2024

Article published online:
18 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zhukovskaya NA, Dikusar EA, Potkin VI, Vyglazov OG. Chem. Nat. Compd. 2009; 45: 148
    • 1b Zhukovskaya NA, Dikusar EA, Vyglazov OG. Chem. Nat. Compd. 2008; 44: 688
    • 1c Dikusar EA, Zhukovskya NA. Russ. J. Org. Chem. 2008; 44: 1389
    • 1d Lukasczyk A, Martin H, Diel PJ, Föry W, Gätzi K, Kristinsson H, Müller B, Muntwyler JP, Pachlatko H, Rempfler H, Schurter R, Szczepanski H. Patent EP 0012158, 1980
    • 1e Crichlow GV, Cheng KF, Dabideen D, Ochani M, Aljabari B, Pavlov VA, Miller EJ, Lolis E, Al-Abed Y. J. Biol. Chem. 2007; 282: 3089
  • 2 Hayashi I, Shimizu K. Bull. Chem. Soc. Jpn. 1983; 56: 3197
  • 3 Bachovchin DA, Wolfe MR, Masuda K, Brown SJ, Spicer TP, Fernandez-Vega V, Chase P, Hodder PS, Rosen H, Cravatt BF. Bioorg. Med. Chem. Lett. 2010; 20: 2254
    • 4a Hwu JR, Tsay S, Hong SC, Hsu M, Liu C, Chou SP. Bioconjugate Chem. 2013; 24: 1778
    • 4b Bindu PJ, Mahadevan KM, Satyanarayan ND, Ravikumar Naik TR. Bioorg. Med. Chem. Lett. 2012; 22: 898
    • 5a Liu XH, Zhi LP, Song BA, Xu HL. Chem. Res. Chin. Univ. 2008; 24: 454
    • 5b Li TG, Liu JP, Han JT, Fu B, Wang DQ, Wang MG. Chin. J. Org. Chem. 2009; 29: 898
    • 5c Ma JA, Huang RQ, Chai YX. Prog. Nat. Sci. 2002; 12: 271
    • 5d Song BA, Liu XH, Yang S, Hu DY, Jin LH, Zhang YT. Chin. J. Org. Chem. 2005; 25: 507
  • 6 Jeong TS, Kim JM, Yu H, Kim SK, Choi Kim JK, Lee SS, Lee WS. Bio. Med. Chem. Let. 2005; 15: 1525
  • 7 Kura H, Tanabe J, Oka H, Kunimoto K, Matsumoto A, Ohwa M. New Rad. Tech. Rep. 2004; 30
  • 8 Kundu SK, Rahman M, Dhara P, Hajra A, Majee A. Synth. Commun. 2012; 42: 1848
    • 9a De Kimpe N. In Comprehensive Heterocyclic Chemistry II, Vol. 1, Chap. 1. Padwa A. Elsevier; Oxford: 1996: 21
    • 9b Davies DE, Storr RC. In Comprehensive Heterocyclic Chemistry, Vol. 7, Part 5. Lwowski W. Pergamon; Oxford: 1984: 237-284
  • 10 Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK. Plant Cell 2003; 15: 1263
  • 11 Takemoto T, Nomoto K, Fushiya S, Ouchi R, Kusano G, Hikino H, Takagi S, Matsuura Y, Kakudo M. Proc. Jpn. Acad., Ser. B 1978; 54: 469
    • 12a Komarov IV, Grigorenko AO, Turov AV, Khilya VP. Russ. Chem. Rev. 2004; 73: 785
    • 12b Shuman RT, Rothenberger RB, Campbell CS, Smith GF, Gifford-Moore DS, Paschal JW, Gesellchen PD. J. Med. Chem. 1995; 38: 4446
    • 12c Kern D, Schutkowski M, Drakenberg T. J. Am. Chem. Soc. 1997; 119: 8403
    • 13a Smetanin IA, Novikov MS, Agafonova AV, Rostovskii NV, Khlebnikov AF, Kudryavtsev IV, Terpilowski MA, Serebriakova MK, Trulioff AS, Goncharov NV. Org. Biomol. Chem. 2016; 14: 4479
    • 13b Reidl TW, Son J, Wink DJ, Anderson LL. Angew. Chem. Int. Ed. 2017; 56: 11579
  • 14 Bettadaiah B, Santosh Kumar S, Vijendra Kumar N, Srinivas P. Synthesis 2014; 46: 1847
  • 15 Bajohr J, Dupeux A, Schenk D, Jans C, Lautens M. Org. Lett. 2023; 25: 5361
    • 16a Deepthi A, Meenakshy CB, Mohan M. Synthesis 2023; 55: 3875
    • 16b Bao M, Doyle MP. ChemCatChem 2023; 15: e202301090
    • 16c Peng S, Yang L, Wang H, Lang M. Synthesis 2023; 56: 389
    • 16d Sansinenea E, Ortiz A. Eur. J. Org. Chem. 2022; e202200210
    • 16e Banerjee P, Biju AT. Donor-Acceptor Cyclopropanes in Organic Synthesis . Wiley-VCH; Weinheim: 2024
    • 16f Doraghi F, Karimian S, Qareaghaj OH, Karimi MJ, Larijani B, Mahdavi M. J. Organomet. Chem. 2024; 1005: 122963
    • 16g Ortega A, Manzano R, Uria U, Carrillo L, Reyes E, Tejero T, Merino P, Vicario JL. Angew. Chem. Int. Ed. 2018; 57: 8225
    • 16h Pirenne V, Muriel B, Waser J. Chem. Rev. 2021; 121: 227
    • 16i Xia L, Liu X, Feng X. Angew. Chem. Int. Ed. 2021; 133: 9276
    • 16j Petzold M, Jones JG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 6225
    • 16k Racine S, de Nanteuil F, Serrano E, Waser J. Angew. Chem. Int. Ed. 2014; 53: 8484
    • 17a Hazra A, Kanji T, Banerjee P. J. Org. Chem. 2022; 88: 960
    • 17b Hazra A, Dey R, Kushwaha A, Dhilip Kumar TJ, Banerjee P. Org. Lett. 2023; 25: 5470
    • 17c Hazra A, Ghosh A, Yadav N, Banerjee P. Chem. Commun. 2023; 59: 11133
    • 17d Dutt S, Kumar R, Banerjee N, Saha D, Banerjee P. Adv. Synth. Catal. 2024; 366: 526
    • 17e Yadav N, Hazra A, Singh P, Banerjee P. Adv. Synth. Catal. 2024; 366: 1113
    • 17f Kaur N, Kumar P, Hazra A, Banerjee P. Org. Lett. 2022; 24: 8249
    • 17g Saha D, Maajid Taily I, Banerjee P. Eur. J. Org. Chem. 2021; 5053
    • 17h Kumar P, Kumar R, Banerjee P. J. Org. Chem. 2020; 85: 6535
    • 17i Taily IM, Saha D, Banerjee P. Eur. J. Org. Chem. 2019; 7804
    • 17j Singh P, Varshnaya RK, Dey R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1447
  • 18 CCDC 2339964 (3a) and CCDC 2289778 (4p) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 19a Das S, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2017; 56: 11554
    • 19b Harikumar S, Kandy LT. K, Guin A, Biju AT. Org. Biomol. Chem. 2024; 22: 1834
    • 19c Deswal S, Guin A, Biju AT. Org. Lett. 2023; 25: 1643
    • 19d Guin A, Rathod T, Gaykar RN, Roy T, Biju AT. Org. Lett. 2020; 22: 2276
    • 20a Singh K, Kumar P, Jagadeesh C, Patel M, Das D, Saha J. Adv. Synth. Catal. 2020; 362: 4130
    • 20b Zhang G.-Y, Zhang P, Li B.-W, Liu K, Li J, Yu Z.-X. J. Am. Chem. Soc. 2022; 144: 21457
    • 20c Yu J, Xu M, Wang X, Zhang B, Mao H, Lv X, Zhou L. Org. Chem. Front. 2022; 9: 1850
    • 21a Rykaczewski KA, Wearing ER, Blackmun DE, Schindler CS. Nat. Synth. 2022; 1: 24
    • 21b Xia P.-J, Hu Y.-Z, Ye Z.-P, Li X.-J, Xiang H.-Y, Yang H. J. Org. Chem. 2020; 85: 3538
    • 21c Blake JA, Pratt DA, Lin S, Walton JC, Mulder P, Ingold KU. J. Org. Chem. 2004; 69: 3112