Synthesis
DOI: 10.1055/a-2317-6778
paper
Special Topic Dedicated to Prof. H. Ila

Solid-State Mechanochemical Clemmensen Reduction

Debjyoti Bhattacharjee
,
Sayan K. Jana
,
Biplab Maji
The authors thank DST-SERB, GoI (grant no. SCP/2022/000352) for financial support. SKJ thanks PMRF for the fellowship.


Dedicated to Professor Dr. Hiriyakkanavar Ila on the occasion of her 80th birthday

Abstract

Mechanochemical synthesis has emerged as a sustainable alternative to traditional organic reactions, offering several advantages, including reduced solvent usage, lower reaction time, lower energy consumption, and enhanced reaction efficiency. In this study, the application of mechanochemistry to Clemmensen reduction, a classic method for converting aldehydes and ketones into alkanes, was explored. By employing ball milling as a mechanical activation, the feasibility and efficacy of mechanochemical Clemmensen reduction in various substrates were demonstrated. The results indicate that this approach offers comparable or improved yields and functional group compatibility compared to conventional methods while minimizing environmental impact. The reaction optimization strategies and scope of substrates are discussed, highlighting the potential of mechanochemical synthesis for sustainable organic transformations.

Supporting Information



Publication History

Received: 22 March 2024

Accepted after revision: 30 April 2024

Accepted Manuscript online:
30 April 2024

Article published online:
21 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Li J, Huang C.-Y, Li C.-J. Angew. Chem. Int. Ed. 2022; 61: e202112770
    • 2a Bozell JJ, Petersen GR. Green Chem. 2010; 12: 539
    • 2b Vennestrøm PN. R, Osmundsen CM, Christensen CH, Taarning E. Angew. Chem. Int. Ed. 2011; 50: 10502
    • 2c Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y, Yao Y. Chem. Rev. 2020; 120: 6490
    • 2d Mika LT, Cséfalvay E, Németh Á. Chem. Rev. 2018; 118: 505
  • 3 Clemmensen E. Ber. Dtsch. Chem. Ges. 1913; 46: 1837
  • 4 Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Environ. Sci. Technol. 2013; 47: 4967
    • 5a Mehta M, Holthausen MH, Mallov I, Pérez M, Qu Z.-W, Grimme S, Stephan DW. Angew. Chem. Int. Ed. 2015; 54: 8250
    • 5b Dehmlow EV, Niemann T, Kraft A. Synth. Commun. 1996; 26: 1467
    • 5c Lau CK, Dufresne C, Belanger PC, Pietre S, Scheigetz J. J. Org. Chem. 1986; 51: 3038
    • 5d Ketcha DM, Lieurance BA, Homan DF. J, Gribble GW. J. Org. Chem. 1989; 54: 4350
    • 5e Andrews RJ, Chitnis SS, Stephan DW. Chem. Commun. 2019; 55: 5599
    • 6a Yang Z, Zhu X, Yang S, Cheng W, Zhang X, Yang Z. Adv. Synth. Catal. 2020; 362: 5496
    • 6b Schäfer C, Ellstrom CJ, Cho H, Török B. Green Chem. 2017; 19: 1230
    • 6c Zhang B, Guo X, Tao L, Li R, Lin Z, Zhao W. ACS Catal. 2022; 12: 4640
    • 7a Asensio JM, Miguel AB, Fazzini P.-F, van Leeuwen PW. N. M, Chaudret B. Angew. Chem. Int. Ed. 2019; 58: 11306
    • 7b Wang W, Yang Y, Luo H, Hu T, Liu W. World J. Clin. Cases 2011; 12: 436
    • 7c Kogan V, Aizenshtat Z, Neumann R. Angew. Chem. Int. Ed. 1999; 38: 3331
    • 8a Li J, He L, Liu X, Cheng X, Li G. Angew. Chem. Int. Ed. 2019; 58: 1759
    • 8b Sun K, Xu Z, Ramadoss V, Tian L, Wang Y. Chem. Commun. 2022; 58: 11155
    • 10a Stolle A, Szuppa T, Leonhardt SE. S, Ondruschka B. Chem. Soc. Rev. 2011; 40: 2317
    • 10b Bruckmann A, Krebs A, Bolm C. Green Chem. 2008; 10: 1131
  • 11 Gomollón-Bel F. Chem. Int. 2019; 41: 12
    • 12a Kubota K, Pang Y, Miura A, Ito H. Science 2019; 366 (6472) : 1500
    • 12b Takahashi R, Hu A, Gao P, Gao Y, Pang Y, Seo T, Jiang J, Maeda S, Takaya H, Kubota K, Ito H. Nat. Commun. 2021; 12: 6691
    • 12c Gao Y, Feng C, Seo T, Kubota K, Ito H. Chem. Sci. 2022; 13: 430
    • 12d Gao Y, Kubota K, Ito H. Angew. Chem. Int. Ed. 2023; 62: e202217723
    • 12e Takahashi R, Gao P, Kubota K, Ito H. Chem. Sci. 2023; 14: 499
    • 12f Gao P, Jiang J, Maeda S, Kubota K, Ito H. Angew. Chem. Int. Ed. 2022; 61: e202207118
    • 12g Pontini L, Leitch JA, Browne DL. Green Chem. 2023; 25: 4319
    • 13a Schlepphorst C, Maji B, Glorius F. ACS Catal. 2016; 6: 4184
    • 13b Collins KD, Glorius F. Nat. Chem. 2013; 5: 597
  • 14 Bulavka VN. Int. Electron. Conf. Synth. Org. Chem., 8th 2004; A025
  • 15 Kiss Á, Hell Z, Bálint M. Org. Biomol. Chem. 2010; 8: 331
  • 16 Feng H.-J, Sun X, Wang J.-W. New J. Chem. 2023; 47: 3104
  • 17 Wang A, Zhou X, Yan J, Hou T, He M, Qian J, Zhou W, Sun Y. Eur. J. Org. Chem. 2023; 26: e202300590
  • 18 Wang H, Li L, Bai X.-F, Shang J.-Y, Yang K.-F, Xu L.-W. Adv. Synth. Catal. 2013; 355: 341
  • 19 Cooper T, Novak A, Humphreys LD, Walker MD, Woodward S. Adv. Synth. Catal. 2006; 348: 686
  • 20 Fu F, Gurung L, Czaun M, Mathew T, Prakash GK. S. Tetrahedron Lett. 2019; 60: 151020
  • 21 Jeong J, Suzuki K, Yamaguchi K, Mizuno N. New J. Chem. 2017; 41: 13226
  • 22 Echevarría I, Vaquero M, Manzano BR, Jalón FA, Quesada R, Espino G. Inorg. Chem. 2022; 61: 6193
  • 23 Andries-Ulmer A, Brunner C, Rehbein J, Gulder T. J. Am. Chem. Soc. 2018; 140: 13034
  • 24 Li S, Ma Y, Zhao Y, Liu R, Zhao Y, Dai X, Ma N, Streb C, Chen X. Angew. Chem. Int. Ed. 2023; 62: e202314999
  • 25 Miyazawa A, Yamato T, Tashiro M. J. Org. Chem. 1991; 56: 1334
  • 26 Takahashi T, Yoshimura M, Suzuka H, Maegawa T, Sawama Y, Monguchi Y, Sajiki H. Tetrahedron 2012; 68: 8293
  • 27 Sang S, Unruh T, Demeshko S, Domenianni LI, van Leest NP, Marquetand P, Schneck F, Würtele C, de Zwart FJ, de Bruin B, González L, Vöhringer P, Schneider S. Chem. Eur. J. 2021; 27: 16978
  • 28 Dong C.-p, Nakamura K, Taniguchi T, Mita S, Kodama S, Kawaguchi S.-i, Nomoto A, Ogawa A, Mizuno T. ACS Omega 2018; 3: 9814
  • 29 Yao W, Li R, Jiang H, Han D. J. Org. Chem. 2018; 83: 2250
  • 30 Cook A, MacLean H, St Onge P, Newman SG. ACS Catal. 2021; 11: 13337