Synthesis
DOI: 10.1055/a-2312-5815
paper
Special Issue Dual Catalysis

Tandem One-Pot Synthesis of 2H- and 3H-Pyrroles Enabled by Dual Rh(II)/Pd(0) Catalysis

Seoung-Mi Choi
a   Department of Chemistry, Dongguk University-Seoul, Pildong-ro, 1-gil 30, Jung-gu, Seoul 04620, Korea
,
Yuri Yun
b   Department of Chemistry (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
,
Ju Hyun Kim
a   Department of Chemistry, Dongguk University-Seoul, Pildong-ro, 1-gil 30, Jung-gu, Seoul 04620, Korea
› Author Affiliations
This work was financially supported by National Research Foundation (2022R1A2C1002829). This work was supported by the Dongguk University Research Fund of 2024.


Abstract

Regioselective approaches toward 2H- and 3H-pyrroles, which are biologically important but easily isomerizable compounds, have been successfully achieved via dual Rh(II)/Pd(0) relay catalysis and DBU-mediated processes in one-pot operation using N-tosyltriazoles and hydroxymethylallyl carbonates. In this transformation, readily accessible N-tosyltriazoles were enabled as stable nitrogen sources for the two scaffolds, and the regioselectivity was controlled by the substituent positions of the hydroxymethylallyl carbonates.

Supporting Information



Publication History

Received: 06 March 2024

Accepted after revision: 23 April 2024

Accepted Manuscript online:
23 April 2024

Article published online:
06 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Seipp K, Geske L, Opatz T. Mar. Drugs 2021; 19: 514
    • 1b Hu DX, Withall DM, Challis GL, Thomson RJ. Chem. Rev. 2016; 116: 7818
    • 1c Hu DX, Clift MD, Lazarski KE, Thomson RJ. J. Am. Chem. Soc. 2011; 133: 1799
    • 2a Bachrach SM. J. Org. Chem. 1993; 58: 5414
    • 2b Patterson JM, Soedigdo S. J. Org. Chem. 1968; 33: 2057
    • 2c Patterson JM, Burka LT. Tetrahedron Lett. 1969; 10: 2215
    • 2d Patterson JM, Ferry JD, Haan JW. D, Boyd MR. J. Am. Chem. Soc. 1975; 97: 360
    • 3a Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 3b Zhuo C.-X, Liu W.-B, Wu Q.-F, You S.-L. Chem. Sci. 2012; 3: 205
    • 3c Zhuo C.-X, Wu Q.-F, Zhao Q, Xu Q.-L, You S.-L. J. Am. Chem. Soc. 2013; 135: 8169
    • 3d Zhuo C.-X, Cheng Q, Liu W.-B, Zhao Q, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 8475
    • 3e Wu K.-J, Dai L.-X, You S.-L. Chem. Commun. 2013; 49: 8620
    • 3f James MJ, Cuthbertson JD, O’Brien P, Taylor RJ. K, Unsworth WP. Angew. Chem. Int. Ed. 2015; 54: 7640
    • 3g Zhang Y.-Q, Chen Y.-B, Liu J.-R, Wu S.-Q, Fan X.-Y, Zhang Z.-X, Hong X, Ye L.-W. Nat. Chem. 2021; 13: 1093
    • 3h Zhuo C.-X, Zhou Y, You S.-L. J. Am. Chem. Soc. 2017; 136: 6590
    • 3i Zheng C, Zhuo C.-X, You S.-L. J. Am. Chem. Soc. 2017; 136: 16251
    • 3j Zhou Y, Zhuo C.-X, Gu Q, You S.-L. Adv. Synth. Catal. 2015; 357: 912
    • 3k Polák P, Tobrman T. Org. Lett. 2017; 19: 4608
    • 3l Yamaguchi M, Fujiwara S, Manabe K. Org. Lett. 2019; 21: 6972
    • 3m Yamaguchi M, Fujiwara S, Mori Y, Konishi H, Manabe K. Tetrahedron 2022; 123: 132962
  • 4 Shcherbakov NV, Titov GD, Chikunova EI, Filippov IP, Rostovskii NV, Kukushkin VY, Dubovtsev AY. Org. Chem. Front. 2022; 9: 5133
  • 5 Shimbayashi T, Matsushita G, Nanya A, Eguchi A, Okamoto K, Ohe K. ACS Catal. 2018; 8: 7773
  • 6 Zhu X.-Q, Yuan H, Sun Q, Zhou B, Han X.-Q, Zhang Z.-X, Lu X, Ye L.-W. Green Chem. 2018; 20: 4287
    • 7a Lee JM, Na Y, Han H, Chang S. Chem. Soc. Rev. 2004; 33: 302
    • 7b Chen D.-F, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
    • 7c Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 7d Kim UB, Jung DJ, Jeon HJ, Rathwell K, Lee S.-g. Chem. Rev. 2020; 120: 13382
    • 7e Fu J, Huo X, Li B, Zhang W. Org. Biomol. Chem. 2017; 15: 9747
    • 7f Martínez S, Veth L, Lainer B, Dydio P. ACS Catal. 2021; 11: 3891
    • 7g Inamdar SM, Shinde VS, Patil NT. Org. Biomol. Chem. 2015; 13: 8116
    • 7h Singh S, Roy VJ, Dagar N, Sen PP, Roy SR. Adv. Synth. Catal. 2021; 363: 937
    • 7i Lee KR, Lee YL, Choi KI, Lee S.-g. Synthesis 2022; 54: 555
    • 7j Bain AI, Chinthapally K, Hunter AC, Sharma I. Eur. J. Org. Chem. 2022; 15
    • 7k Hirner JJ, Shi Y, Blum SA. Acc. Chem. Res. 2011; 44: 603
    • 7l Malakar C, Dell’Amico L, Zhang W. Eur. J. Org.Chem. 2023; 26: e202201114
    • 7m Hunter AC, Chinthapally K, Bain AI, Stevens JC, Sharma I. Adv. Synth. Catal. 2019; 361: 2951
    • 7n Qureshi Z, Kim JY, Bruun T, Lam H, Lautens M. Angew. Chem. Int. Ed. 2013; 52: 3208
    • 7o Qureshi Z, Kim JY, Bruun T, Lam H, Lautens M. ACS Catal. 2016; 6: 4946
    • 8a Chen Z.-S, Huang L.-Z, Jeon HJ, Xuan Z, Lee S.-g. ACS Catal. 2016; 6: 4914
    • 8b Huang L.-Z, Xuan Z, Jeon HJ, Du Z.-T, Kim JH, Lee S.-g. ACS Catal. 2018; 8: 7340
    • 8c Chen Z.-S, Huang X.-Y, Chen L.-H, Gao J.-M, Ji K. ACS Catal. 2017; 7: 7902
    • 8d Chen L.-H, Ma Y.-T, Yang F, Huang X.-Y, Chen S.-W, Ji K, Chen Z.-S. Adv. Synth. Catal. 2019; 361: 1307
    • 8e Wang X.-X, Huang X.-Y, Lei S.-H, Yang F, Gao J.-M, Ji K, Chen Z.-S. Chem. Commun. 2020; 56: 782
    • 8f Chen Z.-S, Huang X.-Y, Gao J.-M, Ji K. Org. Lett. 2016; 18: 5876
    • 8g Zhou Q.-Q, Cheng M, Liu Q, Qu B.-Q, Huang X.-Y, Yang F, Ji K, Chen Z.-S. Org. Lett. 2021; 23: 9151
    • 8h Du M, Wang X, Zhang J, Liu P, Li C.-T. J. Org. Chem. 2023; 88: 9496
    • 8i Xuan Z, Chen ZS. Eur. J. Org. Chem. 2022; e202200499
    • 8j Xu J, Ge Z, Ding K, Wang X. JACS Au 2023; 3: 2862
  • 9 Huang L.-Z, Xuan Z, Park J.-U, Kim JH. Org. Lett. 2022;  24: 6951
  • 10 Park J.-U, Huang L.-Z, Cho H.-J, Park BY, Kim JH. J. Org. Chem. 2023; 88: 585
  • 11 Gao M, Luo Y, Xu Q, Zhao Y, Gong X, Xia Y, Hu L. Angew. Chem. Int. Ed. 2021; 60: 19813