Synthesis
DOI: 10.1055/a-2311-4002
review
Dedicated to Prof. H. Ila

ortho-Halobenzyl Halides as Precursors for the Synthesis of Five- to Nine-Membered Ring Structures Employing Transition Metals as Catalysts

Nayyef Aljaar
a   Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
,
Majed Shtaiwi
a   Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
,
Basem F. Ali
b   Department of Chemistry, Faculty of Science, Al al-Bayt University, Al-Mafraq 25113, Jordan
,
Mahmoud Al-Refai
b   Department of Chemistry, Faculty of Science, Al al-Bayt University, Al-Mafraq 25113, Jordan
,
Kamal Kant
c   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
,
Ng Shereinai Bliss
c   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
,
Mousa Al-Noaimi
a   Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
d   Department of Chemistry, Faculty of Science, Kuwait University, 13060 Safat, Kuwait
,
Lo'ay Ahmed Al-Momani
a   Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
,
c   Department of Chemistry, National Institute of Technology Manipur, Imphal – 795004, India
› Author Affiliations
N.A. gratefully acknowledges the financial and research support from The Hashemite University (Department of Chemistry). C.C.M. is grateful to the Science and Engineering Research Board (SERB), India (CRG/2020/004509 and ECR/2016/000337) for financial support.


Abstract

This review highlights the multifaceted usefulness of o-halobenzyl halides as pivotal substrates for the construction of five- to nine-membered cyclic structures with the aid of transition metals as catalysts. These privileged entities engage dual active sites, enabling the combination of both intermolecular benzylation and intramolecular arylation strategies that directs the formation of a diverse repository of cyclic structures. The introduction of transition-metal catalysis in cross-coupling transformations sparked a revolution in forging aryl–heteroatom bonds, culminating in the evolution of more potent methodologies for the synthesis of a wide spectrum of valuable compounds. Furthermore, the associated pharmaceutical and biological attributes of these cyclic structures augment their significance in medicinal chemistry research. This review aims to showcase the importance of this synthetic methodology and its far-reaching applications in synthesis.

1 Introduction

2 Synthesis of Five-Membered Rings

3 Synthesis of Six-Membered Rings

4 Synthesis of Seven-Membered Rings

5 Synthesis of Eight- and Nine-Membered Rings

6 Conclusion



Publication History

Received: 10 March 2024

Accepted after revision: 22 April 2024

Accepted Manuscript online:
22 April 2024

Article published online:
16 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews on transition-metal-catalyzed C–X and C–C coupling reaction see:
    • 1a Wegner H, Auzias M. Angew. Chem. Int. Ed. 2011; 50: 8236
    • 1b Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
    • 1c Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
    • 1d Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
    • 1e Fairlamb IJ. S. Annu. Rep. Prog. Chem., Sect. B 2006; 102: 50
    • 2a Stumer R. Angew. Chem. Int. Ed. 1999; 38: 3307
    • 2b Aranyos A, Old DW, Kiyomori A, Wolfe JP, Sadighi JP, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 4369
    • 2c Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PJ. Wiley-VCH; Weinheim: 1998
    • 2d Old DW, Wolfe JP, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 9722
    • 2e Beller M. Angew. Chem. Int. Ed. 1995; 34: 1316
    • 2f Hartwig JP. Synlett 1997; 329
    • 2g Wagaw S, Rennels RA, Buchwald SL. J. Am. Chem. Soc. 1997; 119: 8451
    • 2h Wolfe JP, Wagaw S, Buchwald SL. J. Am. Chem. Soc. 1996; 118: 7215
    • 3a Ricordi VG, Fritas CF, Perin G, Lenardão EJ, Jacob RG, Savegnago L, Alues D. Green Chem. 2012; 14: 1030
    • 3b Jiao J, Zhang X.-R, Chang N.-H, Wang J, Wei J.-F, Shi X.-Y, Chen Z.-G. J. Org. Chem. 2011; 76: 1180
    • 3c Cortes-Salva M, Garvin C, Antilla JC. J. Org. Chem. 2011; 76: 1456
    • 3d Altman RA, Shafir A, Lichtor PA, Buchwald SL. J. Org. Chem. 2008; 73: 284
    • 3e Niu J, Zhou H, Li Z, Xu J, Hu S. J. Org. Chem. 2008; 73: 7814
    • 3f Zhang Q, Wang D, Wang X, Ding K. J. Org. Chem. 2009; 74: 7187
    • 3g Wolf C, Liu S, Mei X, August AT, Casimir MD. J. Org. Chem. 2006; 71: 3270
    • 3h Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609
    • 3i Cristau H.-J, Cellier PP, Hamada S, Spindler J.-F, Taillefer M. Org. Lett. 2004; 6: 913
    • 3j Ma D, Cai Q. Org. Lett. 2003; 5: 3799
    • 3k Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 38: 5400
    • 3l Kunz K, Scholz ZV, Ganzer D. Synlett 2003; 2428
    • 3m Kwong FY, Klapars A, Buchwald SL. Org. Lett. 2002; 4: 581
    • 3n Stephens RD, Castro CE. J. Org. Chem. 1963; 28: 2163
    • 3o Stephens RD, Castro CE. J. Org. Chem. 1963; 28: 3313
    • 3p Ullmann F. Chem. Ber. 1903; 36: 2382
    • 3q Ullmann F, Sponagel O. Chem. Ber. 1903; 36: 2382
    • 3r Ullmann F. Chem. Ber. 1901; 34: 2174
  • 4 Patel MV, Bell R, Majest S, Henry R, Kolasa T. J. Org. Chem. 2004; 69: 7058
  • 5 Chai X, Guan Z, Yu S, Zhou Q, Hu H, Zou Y, Tao X, Wu Q. Bioorg. Med. Chem. Lett. 2012; 22, 5849
  • 6 Saeedi M, Mohammadi-Khanaposhtani M, Pourrabia P, Razzaghi N, Ghadimi R, Imanparast S, Faramarzi MA, Bandarian F, Esfahani EN, Safavi M, Rastegar H, Larijani B, Mahdavi M, Akbarzadeh T. Bioorg. Chem. 2019; 83: 161
  • 7 Zou Y, Zhao Q, Liao J, Hu H, Yu S, Chai X, Xu M, Wu Q. Bioorg. Med. Chem. Lett. 2012; 22: 2959
  • 8 Zhang Y, Lv Z, Zhong H, Geng D, Zhang M, Zhang T, Li Y, Li K. Eur. J. Med. Chem. 2012; 53: 356
    • 9a Thangadurai A, Minu M, Wakode S, Agrawal S, Narasimhan B. Med. Chem. Res. 2012; 21: 1509
    • 9b Gaikwad DD, Chapolikar AD, Devkate CG, Warad KD, Tayade AP, Pawar RP, Domb AJ. Eur. J. Med. Chem. 2015; 90: 707
    • 9c Jia B.-X, Zeng X.-L, Ren F.-X, Jia L, Chen X.-Q, Yang J, Liu H.-M, Wang Q. Food Chem. 2014; 155: 31
    • 9d Hassanein HH, Khalifa MM, El-Samaloty ON, El-Rahim MA, Taha RA, Magda Ismail MF. Arch. Pharm. Res. 2008; 31: 562
    • 9e Xue N, Yang X, Wu R, Chen J, He Q, Yang B, Lu X, Hu Y. Bioorg. Med. Chem. 2008; 16: 2550
    • 9f Sheppeck JE. II, Gilmore JL, Tebben A, Xue C.-B, Liu R.-Q, Decicco CP, Duan JJ.-W. Bioorg. Med. Chem. Lett. 2007; 17: 2769
    • 9g Bringmann G, Mühlbacher J, Messer K, Dreyer M, Ebel R, Nugroho BW, Wray V, Proksch P. J. Nat. Prod. 2003; 66: 80
    • 9h Ferrari M, Goadsby P, Roon K, Lipton R. Cephalalgia 2002; 22: 633
    • 9i Naylor EM, Parmee ER, Colandrea VJ, Perkins L, Brockunier L, Candelore MR, Cascieri MA, Colwell LF. Jr, Deng L, Feeney WP, Forrest MJ, Hom GJ, MacIntyre DE, Strader CD, Tota L, Wang P.-R, Wyvratt MJ, Fisher MH, Weber AE. Bioorg. Med. Chem. Lett. 1999; 9: 755
    • 9j Reitz DB, Garland DJ, Norton MB, Collins JT, Reinhard EJ, Manning RE, Olins GM, Chen ST, Palomo MA, McMahon EG. Bioorg. Med. Chem. Lett. 1993; 3: 1055
    • 9k Kant K, Patel CK, Banerjee S, Naik P, Atta AK, Kabi AK, Malakar CC. ChemistrySelect 2023; 8: e202303988
    • 9l Kaldhi D, Vodnala N, Gujjarappa R, Malakar CC, Nayak S, Ravichandiran V, Gupta S, Hazra CK. Tetrahedron Lett. 2019; 60: 223
    • 9m Aljaar N, Ibrahim MM, Younes EA, Al-Noaimi M, Abu-Safieh KA, Ali BF, Kant K, Al-Zaqri N, Sengupta R, Malakar CC. Asian J. Org. Chem. 2023; 12: e202300036
    • 9n Kabi AK, Gujjarappa R, Vodnala N, Kaldhi D, Tyagi U, Mukherjee K, Malakar CC. Tetrahedron Lett. 2020; 61: 152535
    • 9o Kabi AK, Gujjarappa R, Roy A, Sahoo A, Musib D, Vodnala N, Singh V, Malakar CC. J. Org. Chem. 2021; 86: 14597
  • 10 Song JJ, Yee NK. A. Org. Lett. 2000; 2: 519
  • 11 Aljaar N, Al-Noaimi M, Conrad J, Beifuss U. J. Org. Chem. 2020; 86: 1408
  • 12 Arai N, Takahashi M, Mitani M, Mori A. Synlett 2006; 3170
  • 13 Imrich H.-G, Conrad J, Beifuss U. Eur. J. Org. Chem. 2015; 7718
  • 14 Zheng HX, Shan XH, Qu JP, Kang YB. Org. Lett. 2018; 20: 3310
  • 15 Kozikowski AP, Ma D. Tetrahedron Lett. 1991; 32: 3317
  • 16 Barbero N, SanMartin R, Dominguez E. Tetrahedron Lett. 2009; 50: 2129
    • 17a Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 17b Faust R, Garratt PJ, Jones R, Yeh L.-K, Tsotinis A, Panoussopoulou M, Calogeropoulou T, The M.-T, Sugden D. J. Med. Chem. 2000; 43: 1050
    • 17c Campeau L.-C, Thansandote P, Fagnou K. Org. Lett. 2005; 7: 1857
    • 17d A palladium-catalyzed indole alkenylation by C–H functionalization aided by copper oxidants is reported in: Grimser NP, Gaunlett C, Godfrey CR. A, Gaunt MJ. Angew. Chem. Int. Ed. 2005; 44: 3125
    • 17e Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
    • 17f Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
  • 18 Laha JK, Dayal N, Singh S, Bhimpuria R. Eur. J. Org. Chem. 2014; 5469
  • 19 Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: 215
  • 20 Antonio Y, De La Cruz E, Galeazzi E, Guzman A, Bray BL, Greenhouse R, Kurz LJ, Lustig DA, Maddox ML, Muchowski JM. Can. J. Chem. 1994; 72: 15
  • 21 Dodonova J, Tumkevicius S. Synthesis 2017; 49: 2523
  • 22 Cui B, Shan J, Yuan C, Han W, Wan N, Chen Y. Org. Biomol. Chem. 2017; 15: 5887
  • 23 George J, Kim HY, Oh K. Org. Lett. 2019; 21: 5747
  • 24 Shim SC, Jiang LH, Lee DY, Cho CS. Bull. Korean Chem. Soc. 1995; 16: 1064
  • 25 Hansen SV. F, Ulven T. Org. Lett. 2015; 17: 2832
  • 26 Bachon A.-K, Opatz T. J. Org. Chem. 2016; 81: 1858
  • 27 Dandepally SR, Williams AL. Tetrahedron 2009; 50: 1395
  • 28 Huang Y, Chen W, Zhao D, Chen C, Yin H, Zheng L, Jin M, Han S. Chin. J. Chem. 2013; 31: 1007
  • 29 Xu X, Zhao L, Li Y, Soulé J.-F, Doucet H. Adv. Synth. Catal. 2015; 357: 2869
  • 30 Choi YL, Lee H, Kim BT, Choi K, Heo JN. Adv. Synth. Catal. 2010; 352: 2041
  • 31 Paleo MR, Castedo L, Domínguez D. J. Org. Chem. 1993; 58: 2763
  • 32 Ishibashi H, Kobayashi T, Nakashima S, Tamura O. J. Org. Chem. 2000; 65: 9022
  • 33 Halterman RL, Zhu C. Tetrahedron Lett. 1999; 40: 7445
  • 34 Bailey WF, Daskapan T, Rampalli S. J. Org. Chem. 2003; 68: 1334
  • 35 Halterman RL, Crow LD. Tetrahedron Lett. 2003; 44: 2907
    • 36a Kong L, Han X, Jiao P. Chem. Commun. 2014; 50: 14113
    • 36b Muratake H, Natsume M, Nakai H. Tetrahedron 2004; 60: 11783
  • 37 Deng R, Sun L, Li Z. Org. Lett. 2007; 9: 5207
  • 38 Shimizu M, Tomioka Y, Nagao I, Hiyama T. Synlett 2009; 3147
  • 39 Rousseaux S, García-Fortanet J, Del Aguila Sanchez MA, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 9282
  • 40 Song J, Sun W, Li Y, Wei F, Liu C, Qian Y, Chen S. Chem. Asian J. 2016; 11: 211
  • 41 Wang H, Huang H, Gong C, Diao Y, Chen J, Wu S.-H, Wang L. Org. Lett. 2022; 24: 328
    • 42a Acharya A, Gautam V, Ila H. J. Org. Chem. 2017; 82: 7920
    • 42b Patel CK, Gujjarappa R, Kant K, Ghanta S, Singh V, Kabi AK, Al-Zaqri N, Malakar CC. Adv. Synth. Catal. 2023; 365: 2203
    • 42c Kant K, Banerjee S, Patel CK, Kalita S, Reetu R, Naik P, Aljaar N, Malakar CC. Heterocycles 2023; 106: 925
    • 42d Patel CK, Banerjee S, Kant K, Sengupta R, Aljaar N, Malakar CC. Asian J. Org. Chem. 2023; 12: e202300311
    • 42e Reetu R, Gujjarappa R, Malakar CC. Asian J. Org. Chem. 2022; 11: e202200163
    • 42f Bhattacharya P, Senapati K, Chattopadhyay K, Mandal SM, Basak A. RSC Adv. 2015; 5: 61562
    • 42g Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
    • 42h Killander D, Sterner O. Eur. J. Org. Chem. 2014; 1594
    • 42i Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM. J. Nat. Prod. 2008; 71: 1427
    • 42j Simon-Levert A, Aze A, Bontemps-Subielos N, Banaigs B, Genevière A.-M. Chem.-Biol. Interact. 2007; 168: 106
  • 43 Bowman WR, Mann E, Parr J. J. Chem. Soc., Perkin Trans. 1 2000; 2991
  • 44 Parisien M, Valette D, Fagnou K. J. Org. Chem. 2005; 70: 7578
  • 45 Bajracharya GB, Daugulis O. Org. Lett. 2008; 10: 4625
  • 46 Ortiz Villamizar MC, Zubkov FI, Puerto Galvis CE, Vargas Méndez LY, Kouznetsov VV. Org. Chem. Front. 2017; 4: 1736
  • 47 Majumdar KC, Pal AK, Taher A, Debnath P. Synthesis 2007; 1707
  • 48 Majumdar KC, Debnath P, Taher A, Pal AK. Can. J. Chem. 2008; 86: 325
  • 49 Nolan M.-T, Bray JT. W, Eccles K, Cheung MS, Lin Z, Lawrence SE, Whitwood AC, Fairlamb IJ. S, McGlacken GP. Tetrahedron 2014; 70: 7120
  • 50 Majumdar K, Islam R. Synth. Commun. 2008; 38: 4053
  • 51 Majumdar KC, Mukhopadhyay PP, Basu PK. Synth. Commun. 2005; 35: 1291
  • 52 Petrone DA, Malik HA, Clemenceau A, Lautens M. Org. Lett. 2012; 14: 4806
  • 53 Yang W, Yan J, Long Y, Zhang S, Liu J, Zeng Y, Cai Q. Org. Lett. 2013; 15: 6022
  • 54 Garrison AT, Childress ES, Davis DC, Lindsley CW. J. Org. Chem. 2019; 84: 5855
  • 55 Nikolić AM, Živković F, Selaković Ž, Wipf P, Opsenica IM. Eur. J. Org. Chem. 2020; 5616
  • 56 Fang Y, Li C. J. Org. Chem. 2006; 71: 6427
  • 57 Majumdar KC, Chakravorty S, De N. Tetrahedron Lett. 2008; 49: 3419
  • 58 Malakar CC, Schmidt D, Conard J, Beifuss U. Org. Lett. 2011; 13: 1972
  • 59 Zhang XY, Fang LL, Liu N, Wu HY, Fan XS. Chin. Chem. Lett. 2012; 23: 1129
  • 60 Sudheendran K, Malakar CC, Conrad J, Beifuss U. J. Org. Chem. 2012; 77: 10194
  • 61 Mao Z, Zhu X, Wan Y. Catal. Lett. 2015; 145: 1612
  • 62 Barluenga J, Fanňanás FJ, Sanz R, Fernández Y. Chem. Eur. J. 2002; 8: 2034
  • 63 Majumdar K, Mukhopadhyay P, Biswas A. Tetrahedron Lett. 2005; 46: 6655
  • 64 Majumdar KC, Chattopadhyay B, Nath S. Synth. Commun. 2007; 37: 2907
  • 65 Castanheiro T, Donnard M, Gulea M, Suffert J. Org Lett. 2014; 16: 3060
    • 66a Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S, Nuckolls C. Acc. Chem. Res. 2015; 48: 267
    • 66b Penning TM. Chem. Res. Toxicol. 2014; 27: 1901
    • 66c Ghinet A, Gautret P, Hijfte NV, Ledé B, Hénichart J.-P, Bîcu E, Darbost U, Rigo B, Daïch A. Chem. Eur. J. 2014; 20: 10117
    • 66d Castillo D, Sauvain M, Rivaud M, Jullian V. Planta Med. 2014; 80: 902
    • 66e Jin Z. Nat. Prod. Rep. 2011; 28: 1126
    • 66f Nakanishi T, Suzuki M, Saimoto A, Kabasawa T. J. Nat. Prod. 1999; 62: 864
    • 66g Boulware RT, Stermitz FR. J. Nat. Prod. 1981; 44: 200
    • 66h Muth CW, Bhattacharya B, Mahaffey RL, Minigh HL. J. Med. Chem. 1973; 16: 303
  • 67 Majumdar K, Chattopadhyay B, Pal A. Lett. Org. Chem. 2008; 5: 276
  • 68 Zhang X, Guo X, Fang L, Song Y, Fan X. Eur. J. Org. Chem. 2013; 8087
  • 69 Liu C, Zhu XJ, Han YZ, Yang HJ, Zhu CJ, Fu H. Org. Biomol. Chem. 2019; 17: 4984
  • 70 Majumdar KC, Mukhopadhyay PP. Synthesis 2003; 920
  • 71 Sanz R, Ignacio JM, Castroviejo MP, Fañanásb FJ. ARKIVOC 2007; (iv): 84
  • 72 Chouhan G, Alper HJ. J. Org. Chem. 2009; 74: 6181
  • 73 Han W, Zhou X, Yang S, Xiang G, Cui B, Chen Y. J. Org. Chem. 2015; 80: 11580
  • 74 Wang M, Zhang X, Zhuang Y.-H, Xu Y.-H, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 1341
  • 75 Song ZY, Luo J, Ren DZ, Fu J, Liu YJ, Jin FM, Huo ZB. ARKIVOC 2017; (v): 148
  • 76 Zhang T, Cui B, Han W, Wan N, Bai M, Chen Y. Eur. J. Org. Chem. 2017; 3179
  • 77 Arasakumar T, Shyamsivappan S, Gopalan S, Ata A, Mohan PS. Synlett 2019; 30: 63
  • 78 Hoshimoto Y, Nishimura C, Sasaoka Y, Kumar R, Ogoshi S. Bull. Chem. Soc. Jpn. 2020; 93: 182
  • 79 Laha JK, Dayal N, Jain R, Patel K. J. Org. Chem. 2014; 79: 10899
  • 80 De S, Ghosh S, Bhunia S, Sheikh JA, Bisai A. Org. Lett. 2012; 14: 4466
  • 81 Maity A, Mondal S, Paira R, Hazra A, Naskar S, Sahu KB, Saha P, Banerjee S, Mondal NB. Tetrahedron Lett. 2011; 52: 3033
  • 82 Malakar CC, Baskakova A, Conrad J, Beifuss U. Chem. Eur. J. 2012; 18: 8882
  • 83 Fan X, Li B, Guo S, Wang Y, Zhang X. Chem. Asian J. 2014; 9: 739
  • 84 Kiruthika SE, Perumal PT. Org. Lett. 2014; 16: 484
  • 85 Lee HK, Sohn H.-S, Cho CS. Synth. Commun. 2017; 47: 1046
  • 86 Sikari R, Sinha S, Chakraborty G, Das S, van Leest NP, Paul ND. RSC Adv. 2019; 18: 4342
  • 87 Luong TT. H, Brion JD, Alami M, Messaoudi S. J. Org. Chem. 2014; 80: 751
  • 88 Wang R, Qian W, Bao W. Tetrahedron Lett. 2012; 53: 442
  • 89 Pal S, Mukherjee M, Podder D, Mukherjee AK, Ghatak UR. J. Chem. Soc., Chem. Commun. 1991; 1591
    • 90a García-Cuadrado D, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2006; 128: 1066
    • 90b García-Cuadrado D, de Mendoza P, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2007; 129: 6880
  • 91 Giorgi G, Maiti S, López-Alvarado P, Menendez JC. Org. Biomol. Chem. 2011; 9: 2722
  • 92 Dai Y, Feng X, Liu H, Jiang H, Bao M. J. Org. Chem. 2011; 76: 10068
  • 93 Umeda R, Miyake S, Nishiyama Y. Chem. Lett. 2012; 41: 215
  • 94 Toummini D, Ouazzani F, Taillefer M. Org. Lett. 2013; 15: 4690
  • 95 Chen Y, Zhang N, Ye L, Chen J, Sun X, Zhang X, Yan M. RSC Adv. 2015; 5: 48046
  • 96 Wei Q, Cai JH, Hu XD, Zhao J, Cong HJ, Zheng C, Liu WB. ACS Catal. 2020; 10: 216
  • 97 Yang L, Matsuyama H, Zhang S, Terada M, Jin T. Org. Lett. 2020; 22: 5121
  • 98 Wu K.-J, Dai L.-X, You S.-L. Org. Lett. 2012; 14: 3772
    • 99a Kalgutkar A, Jones R, Sawant A. Sulfonamide as an Essential Functional Group in Drug Design. In Metabolism Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET. Smith DA. RSC Drug Discovery Series No. 1; RSC Publishing; Cambridge: 2010
    • 99b Olkkola KT, Ahonen J. Midazolam and Other Benzodiazepines . In Modern Anesthetics: Handbook of Experimental Pharmacology . Schîttler J, Schwilden H. Springer-Verlag; Berlin, Heidelberg: 2008: 335
    • 99c Hansch C, Sammes PG, Taylor JB. In Comprehensive Medicinal Chemistry . Pergamon Press; Oxford: 1990: 2
  • 100 Petigara RB, Yale HL. J. Heterocycl. Chem. 1974; 11: 331
  • 101 Harayama T, Sato T, Hori A, Abe H, Takeuchi Y. Synthesis 2004; 1446
  • 102 Goh Y.-H, Kim G, Kim BT, Heo J.-N. Heterocycles 2010; 80: 669
  • 103 Cheetham CA, Massey RS, Pira SL, Pritchard RG, Wallace TW. Org. Biomol. Chem. 2011; 9: 1831
  • 104 Guastavino JF, Rossi RA. J. Org. Chem. 2012; 77: 460
  • 105 Laha JK, Shah PU, Jethava KP. Chem. Commun. 2013; 49: 7623
  • 106 Neogi A, Majhi TP, Ghoshal N, Chattopadhyay P. Tetrahedron 2005; 61: 9368
  • 107 Mitra S, Darira H, Chattopadhyay P. Synthesis 2013; 45: 85
  • 108 Laha JK, Satyanarayana Tummalapalli KS, Gupta A. Eur. J. Org. Chem. 2014; 4773
    • 109a Biswas S, Batra S. Adv. Synth. Catal. 2011; 353: 2861
    • 109b Lu D, Ma C, Yuan S, Zhou L, Zeng Q. Adv. Synth. Catal. 2015; 357: 3491
  • 110 Srinivasulu V, Janda KD, Abu-Yousef IA, O’Connor MJ, Al-Tel TH. Tetrahedron 2017; 73: 2139
  • 111 Yale HL, Sowinski F. J. Med. Chem. 1964; 7: 609
  • 112 Yale HA, Pluscec J. J. Org. Chem. 1970; 35: 4254
  • 113 Margolis BJ, Swidorski JJ, Rogers BN. J. Org. Chem. 2003; 68: 644
  • 114 Laha JK, Sharma S, Dayal N. Eur. J. Org. Chem. 2015; 7885
  • 115 Reames DC, Hunt DA, Bradsher CK. Synthesis 1980; 454
    • 116a Vedejs E, Galante RJ, Goekjian PG. J. Am. Chem. Soc. 1998; 120: 3613
    • 116b Faulkner DJ. Nat. Prod. Rep. 1989; 5: 613
    • 116c Faulkner DJ. Nat. Prod. Rep. 1986; 3: 1
    • 116d Stillings MR, Freeman S, Myers PL, Readhead MJ, Welboum AP, Rance MJ, Atkinson DC. J. Med. Chem. 1985; 28: 225
    • 116e Faulkner DJ. Nat. Prod. Rep. 1984; 1: 251
    • 116f Faulkner DJ. Nat. Prod. Rep. 1984; 1: 551
    • 116g Devon TK, Scott AI. In Handbook of Naturally Occurring Compounds, Vol. II. Academic Press; New York: 1972
    • 116h Basil B, Coffee EC. J, Gell DL, Maxwell DR, Sheffield DJ, Wooldridge KR. H. J. Med. Chem. 1970; 13: 403
  • 117 Majumdar KC, Chattopadhyay B, Samanta S. Tetrahedron Lett. 2009; 50: 3178
  • 118 Majumdar KC, Nandi RK, Samanta S, Chattopadhyay B. Synthesis 2010; 985
  • 119 Jäger M, Görls H, Günther W, Schubert US. Chem. Eur. J. 2013; 19: 2150
  • 120 Nandi A, Mukhopadhyay R, Chattopadhyay P. J. Chem. Soc., Perkin Trans. 1 2001; 3346
  • 121 Adhikary ND, Chattopadhyay P. Eur. J. Org. Chem. 2010; 1754
  • 122 Majumdar KC, Chattopadhyay B, Ray K. Tetrahedron Lett. 2007; 48: 7633
  • 123 Majumdar KC, Chattopadhyay B. Synlett 2008; 979
  • 124 Majumdar KC, Ansary I, Sinha B, Chattopadhyay B. Synthesis 2009; 3593
  • 125 Ghosh T. New J. Chem. 2017; 41: 2927
  • 126 Zhu C, Wang D, Zhao Y, Sun W.-Y, Shi Z. J. Am. Chem. Soc. 2017; 139: 16486