Synlett
DOI: 10.1055/a-2310-0707
letter
Energetic Molecules

N-Alkyl-1,2,4-triazole–Borane Complexes as High-Density Hypergolic Materials

Hongfu Jia
a   School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. of China
b   Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, P. R. of China
,
Wenqi Ma
a   School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. of China
,
Jinjie Chang
a   School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. of China
,
Chunlin He
a   School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (No. 22375021).


Abstract

Hydrazine and its derivatives have served as a conventional bipropellant fuel for several decades. However, their extremely acute toxicity and carcinogenicity, high volatility, and environmental impact have attracted significant attention. In order to synthesize green bipropellant fuels with high density, high specific impulse, and good thermal stability, three novel N-alkyl-1,2,4-triazole–borane complexes were successfully synthesized by reacting alkylated 1,2,4-triazole coordinated with sodium borohydride in the presence of ammonium sulfate. During the droplet test with white fuming nitric acid, there was a relatively short ignition delay time of 98 ms. Additionally, these hypergolic fuels possessed a high density exceeding 1.10 g cm–3, and the specific impulse is ranging from 187 to 199 s, and the highest decomposition temperature reaches 153.4 °C. These results demonstrate their great potential as hypergolic fuels or hypergolic ionic liquid additives in the field of hypergolic materials.

Supporting Information



Publication History

Received: 01 March 2024

Accepted after revision: 20 April 2024

Accepted Manuscript online:
20 April 2024

Article published online:
06 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Harrje DT, Reardon FH. Liquid Propellant Rocket Combustion Instability . Scientific and Technical Information Office, NASA SP-194; Washington DC: 1972
  • 2 Munjal NL, Gupta BL, Varma M. Propellants, Explos., Pyrotech. 1985; 10: 111
  • 3 Zhang Y, Gao H, Joo YH, Shreeve JM. Angew. Chem. Int. Ed. 2011; 50: 9554
  • 4 Isaac Sam I, Gayathri S, Santhosh G, Cyriac J, Reshmi S. J. Mol. Liq. 2022; 350: 118217
  • 5 Jin Y, Zhang W, Zhou Z, Liu T, Xia H, Huang S, Zhang Q. FirePhysChem 2022; 2: 236
  • 6 Gao Y, Gao H, Piekarski C, Shreeve JM. Eur. J. Inorg. Chem. 2007; 4965
    • 7a Gao H, Joo YH, Twamley B, Zhou Z, Shreeve JM. Angew. Chem. Int. Ed. 2009; 48: 2792
    • 7b Zhang Y, Gao H, Guo Y, Joo YH, Shreeve JM. Chem. Eur. J. 2010; 16: 3114
    • 7c Joo YH, Gao H, Zhang Y, Shreeve JM. Inorg. Chem. 2010; 49: 3282
  • 8 Li S, Gao H, Shreeve JM. Angew. Chem. Int. Ed. 2014; 53: 2969
  • 9 He L, Tao G, Parrish DA, Shreeve JM. Chem. Eur. J. 2010; 16: 5736
  • 10 Zhang Y, Shreeve JM. Angew. Chem. Int. Ed. 2011; 50: 935
  • 11 Zhang Q, Shreeve JM. Chem. Rev. 2014; 114: 10527
  • 12 Huang S, Zhang W, Liu T, Wang K, Qi X, Zhang J, Zhang Q. Chem. Asian J. 2016; 11: 3528
  • 13 Liao S, Liu T, Zhou Z, Wang K, Jin Y, Zhang Q. New J. Chem. 2023; 47: 1050
  • 14 Gao H, Shreeve JM. J. Mater. Chem. 2012; 22: 11022
  • 15 Gao X, Gao Z, Tan Y, Chen P, Du Z, Li Y. ACS Omega 2022; 7: 43582
    • 16a Ramachandran PV, Kulkarni AS, Pfeil MA, Dennis JD, Willits JD, Heister SD, Son SF, Pourpoint TL. Chem. Eur. J. 2014; 20: 16869
    • 16b Li X, Wu J, Fang F, Li H, Wang L, Wan H, Guan G. Molecules 2022; 27: 4466
  • 17 Zhang Z, Zhao Z, Wang B, Zhang J. Green Energy Environ. 2021; 6: 794
  • 18 Huang S, Qi X, Liu T, Wang K, Zhang W, Li J, Zhang Q. Chem. Eur. J. 2016; 22: 10187
  • 19 Li X, Nan J, Lu T, Huo H, Zhang Y, Li H, Nie F, Yin H, Chen F.-X. Chin. Chem. Lett. 2018; 29: 939
  • 20 Li X, Lu T, Nan J, Li H, Nie F, Zhang Y.-Q, Chen F.-X. ChemistrySelect 2018; 3: 2548
  • 21 Jiao N, Yuan Y, Yao Y, Liu L, Zhang Y. Fuel Process. Technol. 2022; 231: 107248
  • 22 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision §#BLD#§E.01. Gaussian, Inc; Wallingford CT: 2009
  • 23 Becke D, Axel J. Chem. Phys. 1993; 98: 5648
  • 24 Zhang J, Lu T. Phys. Chem. Chem. Phys. 2021; 23: 20323
  • 25 Li Y, Evans JN. S. J. Am. Soc. Chem. 1995; 117: 7756
  • 26 Liang K.-H, Lu Z.-W, Ren C.-X, Wei J, Fang D.-W. ACS Sustainable Chem. Eng. 2022; 10: 3417
  • 27 Lu T, Chen Q. Chem.: Methods 2021; 1: 231
  • 28 Lu T, Chen F. J. Comput. Chem. 2012; 33: 580
  • 29 Wang M, Wang Z, Zhang J, Fei T, Zhang J. J. Mol. Liq. 2023; 372: 121207
  • 30 Zhang Q, Shreeve JM. Chem. Eur. J. 2013; 19: 15446
  • 31 Lu T, Chen F. J. Mol. Graph. Model. 2012; 38: 314
  • 32 Wang YH, Deng YF, Zhang XH, Pan KZ. J. Propul. Technol. 2008; 29: 110
  • 33 Sućeska M. EXPLO5-version V6.05.04. OZM Research; Czech Republic: 2020