Synthesis
DOI: 10.1055/a-2309-1501
paper

Electrochemical Oxidative Cross-Coupling for the Construction of C(sp3)–C(sp3) Bonds

Kang-Min Wen
a   Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China
,
Xi-Hao Chang
b   School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, P. R. of China
,
Chang Guo
a   Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (grant nos. 21971227, 22222113, 22201008), the Chinese Academy of Sciences Project for Young Scientists in Basic Research (YSBR-054), the Fundamental Research Funds for the Central Universities (WK9990000090, WK9990000111), the Natural Science Foundation of Anhui Province (grant no. 2108085QB76), and the Excellent Youth Research Projects of Universities in Anhui Province (grant no. 2022AH030091).


Abstract

A highly effective oxidation cross-coupling method involving para-cresol derivatives and malononitrile derivatives has been developed utilizing undivided electrolytic conditions. This electrochemical approach offers a robust route for synthesizing diverse malononitrile derivatives featuring quaternary carbon centers and incorporating para-phenol groups. Notably, the direct electrooxidation of the C(sp3)–H bond in the para-cresol derivative plays a crucial role in this process under electrolytic conditions. Various para-cresol derivatives and malononitrile derivatives with different substituents are readily compatible with this electrochemical transformation, affording coupling compounds in up to 99% yield.

Supporting Information



Publication History

Received: 27 February 2024

Accepted after revision: 18 April 2024

Accepted Manuscript online:
18 April 2024

Article published online:
06 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dai X, Wang Y, Li Y, Zhong Y, Pei M, Long J, Dong X, Chen Y.-L, Wang Q, Wang G, Gold BG, Vandenbark AA, Neve KA, Offner H, Wang C. Life Sci. 2022; 294: 120383
  • 2 Meyer LF, Shah DK. J. Pharm. Anal. 2019; 9: 163
  • 3 Anderson DR, Hegde S, Reinhard E, Gomez L, Vernier WF, Lee L, Liu S, Sambandam A, Snider PA, Masih L. Bioorg. Med. Chem. Lett. 2005; 15: 1587
  • 4 Zou Y, Cao S, Zhao B, Sun Z, Liu L, Ji M. Plant Physiol. Biochem. 2022; 190: 240
  • 5 Ma K, Zhang W, Zhang L, He X, Fan Y, Alam S, Yuan X. Front. Plant Sci. 2021; 12: 696169
  • 6 Zhong K, Chen L, Yan X, Tang Y, Hou S, Li X, Tang L. Dyes Pigm. 2020; 182: 108656
  • 7 Johnson TG, Sadeghi-Kelishadi A, Langton MJ. J. Am. Chem. Soc. 2022; 144: 10455
  • 8 Ong DY, Chiba S. Synthesis 2020; 52: 1369
  • 9 Awalt JK, Nguyen AT. N, Fyfe TJ, Thai BS, White PJ, Christopoulos A, Jörg M, May LT, Scammells PJ. J. Med. Chem. 2022; 65: 9076
  • 10 Mohammadpoor-Baltork I, Khosropour AR, Hojati SF. Synlett 2005; 2747
  • 11 Isemura M. Molecules 2019; 24: 528
    • 12a Liang Q, He J, Zhao X, Xue Y, Zuo H, Xu R, Jin Y, Wang J, Li Q, Zhao X. J. Med. Chem. 2021; 64: 4196
    • 12b Nguyen P, Doan P, Rimpilainen T, Konda Mani S, Murugesan A, Yli-Harja O, Candeias NR, Kandhavelu M. J. Med. Chem. 2021; 64: 10908
  • 13 Reveglia P, Savocchia S, Billones-Baaijens R, Cimmino A, Evidente A. J. Agric. Food Chem. 2018; 66: 1760
  • 14 Miroshnychenko A, Ibrahim S, Azab M, Roldan Y, Martinez JP. D, Tamilselvan D, He L, Little JW, Urquhart O, Tampi M, Polk DE, Moore PA, Hersh EV, Claytor B, Carrasco-Labra A, Brignardello-Petersen R. J. Dent. Res. 2023; 102: 391
  • 15 Halbach K, Aulhorn S, Lechtenfeld OJ, Lecluse M, Leippe S, Reemtsma T, Seiwert B, Wagner S, König J, Luckenbach T. Chem. Res. Toxicol. 2022; 35: 315
    • 16a Wang Q.-L, Huang H, Sun Z, Chen Y, Deng G.-J. Green Chem. 2021; 23: 7790
    • 16b Lu L, Li H, Lei A. Chin. J. Chem. 2022; 40: 256
    • 16c Wang Z, Ji X, Zhao J, Huang H. Green Chem. 2019; 21: 5512
    • 16d Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 17a Uyanik M, Nishioka K, Kondo R, Ishihara K. Nat. Chem. 2020; 12: 353
    • 17b Jiang J.-A, Chen C, Guo Y, Liao D.-H, Pan X.-D, Ji Y.-F. Green Chem. 2014; 16: 2807
    • 17c Jiang J.-A, Du J.-L, Zhang Z.-N, Zhai J.-J, Ji Y.-F. Synth. Commun. 2014; 44: 1430
    • 18a Siu JC, Fu N, Lin S. Acc. Chem. Res. 2020; 53: 547
    • 18b Jing QW, Moeller KD. Acc. Chem. Res. 2020; 53: 135
    • 18c Leech MC, Lam K. Acc. Chem. Res. 2020; 53: 121
    • 18d Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
    • 18e Chang X, Zhang Q, Guo C. Angew. Chem. Int. Ed. 2020; 59: 12612
    • 18f Xiong P, Xu HC. Acc. Chem. Res. 2019; 52: 3339
    • 19a Yoshida J.-I, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
    • 19b Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 19c Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 19d Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 19e Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 19f Ma C, Fang P, Mei T.-S. ACS Catal. 2018; 8: 7179
    • 19g Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 19h Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
    • 19i Tang S, Liu Y, Lei A. Chem 2018; 4: 27
    • 19j Du L, Zhang H. Chin. J. Org. Chem. 2023; 43: 1726
    • 19k Chang Z, Wang J, Lu X, Fu Y. Chin. J. Org. Chem. 2022; 42: 147
    • 19l Fu Z, Yang Z, Sun L, Yin J, Yi X, Cai H, Lei A. Chin. J. Org. Chem. 2022; 42: 600
    • 19m Jiang Y, Zeng C. Chin. J. Org. Chem. 2020; 40: 2999
    • 19n Ma H, Mei T. Chin. J. Org. Chem. 2020; 40: 3982
    • 19o Li Z, Sun Q, Qian P, Hu K, Zha Z, Wang Z. Chin. Chem. Lett. 2020; 31: 1855
    • 19p Li J, Zhang S, Xu K. Chin. Chem. Lett. 2021; 32: 2729
    • 19q Dai J.-J, Teng X.-X, Fang W, Xu J, Xu H.-J. Chin. Chem. Lett. 2022; 33: 1555
    • 19r Yang Z.-X, Lai L, Chen J, Yan H, Ye K.-Y, Chen F.-E. Chin. Chem. Lett. 2023; 34: 107956
    • 19s Wang Z, Wang X, Li Q, Ni S, Zhao D, Yang S, Qiu G, Sun K. Chin. Chem. Lett. 2024; 35: 109058
    • 20a Ackermann L. Acc. Chem. Res. 2020; 53: 84
    • 20b Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res. 2020; 53: 45
    • 20c Yuan Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
    • 20d Yang Q.-L, Li Y.-Q, Ma C, Fang P, Zhang X.-J, Mei T.-S. J. Am. Chem. Soc. 2017; 139: 3293
    • 20e Fu N, Li L, Yang Q, Luo S. Org. Lett. 2017; 19: 2122
    • 20f Hou Z.-W, Liu D.-J, Xiong P, Lai X.-L, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2021; 60: 2943
    • 20g Xu Z, Wan J, Liu Y. Chin. J. Org. Chem. 2023; 43: 2425
    • 20h Wang D, Wang J, Ma C, Jiang Y, Yu B. Chin. J. Org. Chem. 2022; 42: 4024
    • 20i Li X, Tao P, Cheng Y, Hu Q, Huang W, Li Y, Luo Z, Huang G. Chin. J. Org. Chem. 2022; 42: 4169
    • 20j Jiang J, Wang K.-L, Li X, Wu C, Ji H.-T, Chen X, He W.-M. Chin. Chem. Lett. 2023; 34: 108699
    • 20k Feng C, Liu X, She Y, Shen Z, Li M. Chin. Chem. Lett. 2023; 34: 107935
  • 21 Imada Y, Röckl JL, Wiebe A, Gieshoff T, Schollmeyer D, Chiba K, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 12136
    • 22a Zhang Q, Chang X, Peng L, Guo C. Angew. Chem. Int. Ed. 2019; 58: 6999
    • 22b Chang X, Zhang J, Zhang Q, Guo C. Angew. Chem. Int. Ed. 2020; 59: 18500
  • 23 Zhang Q, Liang K, Guo C. CCS Chem. 2021; 3: 338
  • 24 He J.-Y, Qian W.-F, Wang Y.-Z, Yao C, Wang N, Liu H, Zhong B, Zhu C, Xu H. Green Chem. 2022; 24: 2483
  • 25 Zhou Q, Turnbull KD. J. Org. Chem. 1999; 64: 2847
  • 26 Tan Z, Zhang H, Xu K, Zeng C. Sci. China: Chem. 2024; 67: 450