Synlett 2024; 35(14): 1698-1702
DOI: 10.1055/a-2233-9431
letter

Catalytic Aerobic Photooxidation of Phosphines using Four-coordinated Organoboron Compounds as Photocatalysts

Yingru Tang
a   School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, P. R. of China
,
Lanfeng Wei
c   Xinjiang Key Laboratory of Coal Mine Disasters Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi, 830023, P. R. of China
,
Yu Wei
a   School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, P. R. of China
,
Liang Xu
a   School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832000, P. R. of China
,
Huanhuan Song
b   Bingtuan Energy Development Institute, Shihezi University, Shihezi, 832000, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (Nos. 22061036 and 21963010). The authors also thank the Program for Youth Science and Technology Innovation Leaders of Xinjiang Bingtuan (2019CB026), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R46), and the Yangtze River Scholar Research Project of Shihezi University (CJXZ201601).


Abstract

A photooxidation approach to the conversion of phosphines into the corresponding phosphine oxides is reported. By taking advantage of O2 in the air as an oxidant and oxygen source, phosphine oxides were obtained efficiently in moderate to excellent yields. A four-coordinated organoboron compound was used as the photocatalyst to activate O2 to its singlet state. This photooxidation method features mild reaction conditions, broad functional-group tolerance, and a wide substrate scope.

Supporting Information



Publication History

Received: 24 November 2023

Accepted after revision: 20 December 2023

Accepted Manuscript online:
20 December 2023

Article published online:
29 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhao D, Wang R. Chem. Soc. Rev. 2012; 41: 2095
    • 1b Hibner-Kulicka P, Joule JA, Skalik J, Bałczewski P. RSC Adv. 2017; 7: 9194
    • 1c Clarion L, Jacquard C, Sainte-Catherine O, Loiseau S, Filippini D, Hirlemann M.-H, Volle J.-N, Virieux D, Lecouvey M, Pirat J.-L, Bakalara N. J. Med. Chem. 2012; 55: 2196
    • 1d O’Brien CJ, Tellez JL, Nixon ZS, Kang LJ, Carter AL, Kunkel SR, Przeworski KC, Chass GA. Angew. Chem. Int. Ed. 2009; 48: 6836
    • 1e Hashiguchi M, Nagata K, Tanaka K, Matsuo Y. Org. Process Res. Dev. 2012; 16: 643
    • 1f Denton RM, An J, Adeniran B, Blake AJ, Lewis W, Poulton AM. J. Org. Chem. 2011; 76: 6749
    • 1g Gao Y, Lu G, Zhang P, Zhang L, Tang G, Zhao Y. Org. Lett. 2016; 18: 1242
    • 1h Wan B, Wang H, Li X, Wu F. Synthesis 2012; 941
    • 1i Kim SH, Kim KH, Lim JW, Kim JN. Tetrahedron Lett. 2014; 55: 531
    • 1j Yadav M, Dara S, Saikam V, Kumar M, Aithagani SK, Paul S, Vishwakarma RA, Singh PP. Eur. J. Org. Chem. 2015; 6526
    • 1k Zhou A.-X, Mao L.-L, Wang G.-W, Yang S.-D. Chem. Commun. 2014; 50: 8529
    • 2a Ghorai D, Müller V, Keil H, Stalke D, Zanoni G, Tkachenko BA, Schreiner PR, Ackermann L. Adv. Synth. Catal. 2017; 359: 3137
    • 2b Grushin VV. Chem. Rev. 2004; 104: 1629
    • 2c Hirai Y, Nakanishi T, Hasegawa Y. J. Lumin. 2016; 170: 801
    • 2d Oka S, Shigehiro Y, Kataoka Y, Ura Y. Chem. Commun. 2020; 56: 12977
    • 3a Wang L, Wang Y, Chen M, Ding M.-W. Adv. Synth. Catal. 2014; 356: 1098
    • 3b Schirmer M.-L, Adomeit S, Spannenberg A, Werner T. Chem. Eur. J. 2016; 22: 2458
    • 3c Grandane A, Longwitz L, Roolf C, Spannenberg A, Murua Escobar H, Junghanss C, Suna E, Werner T. J. Org. Chem. 2019; 84: 1320
    • 3d Tönjes J, Longwitz L, Werner T. Green Chem. 2021; 23: 4852
    • 3e Yamamoto Y, Kawaguchi S.-i, Nishimura M, Sato Y, Shimada Y, Tabuchi A, Nomoto A, Ogawa A. J. Org. Chem. 2020; 85: 14684
    • 4a Tran DP, Sato Y, Yamamoto Y, Kawaguchi S.-i, Kodama S, Nomoto A, Ogawa A. Res. Chem. Intermed. 2021; 47: 3067
    • 4b Oka N, Kajino R, Takeuchi K, Nagakawa H, Ando K. J. Org. Chem. 2014; 79: 7656
    • 5a Poh S, Hernandez R, Inagaki M, Jessop PG. Org. Lett. 1999; 1: 583
    • 5b Yamada T, Suzuki K, Hashimoto K, Ikeno T. Chem. Lett. 1999; 28: 1043
    • 5c Elson KE, Jenkins ID, Loughlin WA. Tetrahedron Lett. 2004; 45: 2491
    • 5d Iqbal N, Cho EJ. Adv. Synth. Catal. 2015; 357: 2187
    • 6a Prokop KA, Goldberg DP. J. Am. Chem. Soc. 2012; 134: 8014
    • 6b Capaldo L, Ertl M, Fagnoni M, Knör G, Ravelli D. ACS Catal. 2020; 10: 9057
  • 7 Brüninghoff R, van Duijne AK, Braakhuis L, Saha P, Jeremiasse AW, Mei B, Mul G. Environ. Sci. Technol. 2019; 53: 8725
  • 8 Wickramasinghe LA, Sharp PR. Inorg. Chem. 2014; 53: 1430
    • 9a Skolia E, Gkizis PL, Nikitas NF, Kokotos CG. Green Chem. 2022; 24: 4108
    • 9b Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
    • 9c Teržan J, Huš M, Likozar B, Djinović P. ACS Catal. 2020; 10: 13415
    • 9d Chen Y, Yang R, Xiao F, Xu T, Mao G, Deng G.-J. Org. Lett. 2023; 25: 3702
    • 10a Bonesi SM, Crespi S, Merli D, Manet I, Albini A. J. Org. Chem. 2017; 82: 9054
    • 10b Fan Q, Zhu L, Li X, Ren H, Wu G, Zhu H, Sun W. Green Chem. 2021; 23: 7945
    • 11a Ohkubo K, Kotani H, Fukuzumi S. Chem. Commun. 2005; 4520
    • 11b Ohkubo K, Nanjo T, Fukuzumi S. Bull. Chem. Soc. Jpn. 2006; 79: 1489
  • 12 Yasui S, Tojo S, Majima T. J. Org. Chem. 2005; 70: 1276
  • 13 Zhang Y, Ye C, Li S, Ding A, Gu G, Guo H. RSC Adv. 2017; 7: 13240
    • 14a Gu X, Li X, Chai Y, Yang Q, Li P, Yao Y. Green Chem. 2013; 15: 357
    • 14b Neveselý T, Svobodová E, Chudoba J, Sikorski M, Cibulka R. Adv. Synth. Catal. 2016; 358: 1654
    • 14c Sridhar A, Rangasamy R, Selvaraj M. New J. Chem. 2019; 43: 17974
    • 14d Ye C, Zhang Y, Ding A, Hu Y, Guo H. Sci. Rep. 2018; 8: 2205
    • 15a Ding A, Li S, Chen Y, Jin R, Ye C, Hu J, Guo H. Tetrahedron Lett. 2018; 59: 3880
    • 15b Rettig ID, Van J, Brauer JB, Luo W, McCormick TM. Dalton Trans. 2019; 48: 5665
  • 16 Zhang J, Mück-Lichtenfeld C, Studer A. Nature 2023; 619: 506
  • 17 Kondo M, Agou T. Chem. Commun. 2022; 58: 5001
    • 18a Zu W, Day C, Wei L, Jia X, Xu L. Chem. Commun. 2020; 56: 8273
    • 18b Zhu Y, Zu W, Tian Q, Cao Z, Wei Y, Xu L. Org. Chem. Front. 2022; 9: 1070
    • 19a Wei L, Zhang J, Xu L. ACS Sustainable Chem. Eng. 2020; 8: 13894
    • 19b Yang J, Cao X, Wei L, Zhang J, Zhang J, Liu P, Xu L, Li P. Molecules 2023; 28: 4082
    • 19c Wei L, Wei Y, Zhang J, Xu L. Green Chem. 2021; 23: 4446
  • 20 Phosphine Oxides 2a–af; General Procedure A flame-dried 25 mL quartz-column reaction tube equipped with a magnetic stirrer bar was charged with the appropriate phosphine 1 (0.2 mmol, 1.0 equiv), AQDAB (0.002 mmol, 1 mol%), and CH3CN (2.0 mL). The tube was placed in a photocatalytic parallel reactor equipped with a white LEDs light source (5 W) at the bottom. The mixture was then irradiated at a distance of ~0.3 cm from the light source with stirring for 3 h at 25 °C. The resulting mixture was concentrated under a vacuum to afford a crude product, which was purified by column chromatography (silica gel, PE–EtOAc). Tris(3-chlorophenyl)phosphine Oxide (2h) Prepared by following the general procedure from tris(3-chlorophenyl) phosphine (1h; 73 mg, 0.20 mmol) as a solid; yield: 95%; mp 135.3–136.6 °C. IR ((KBr): υmax (cm-1)): 3066, 1562, 1463, 1402, 1193, 1136, 1076, 788, 688, 665, 568 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.63 (d, J = 12.4 Hz, 3 H), 7.53–7.51 (m, 3 H), 7.49–7.46 (m, 3 H), 7.43–7.39 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 135.4 (d, J = 16.0 Hz), 134.1, 133.1, 132.7 (d, J = 2.6 Hz), 131.8 (d, J = 10.9 Hz), 130.3 (d, J = 13.3 Hz), 130.0 (d, J = 9.6 Hz). 31P NMR (162 MHz, CDCl3): δ = 25.84. HRMS (APCI): m/z [M + H]+ calcd for C18H13Cl3OP: 380.9764; found: 380.9760. Tris(3-fluorophenyl)phosphine Oxide (2i) Prepared by following the general procedure from tris(3-fluorophenyl)phosphine (1i; 163 mg, 0.20 mmol) as a solid; yield: 99%; mp 94.7–102.5 °C. IR ((KBr): υmax (cm-1)): 1579, 1475, 1421, 1269, 1228, 1186, 1099, 894, 792, 696, 586, 501 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.37 (t, J = 10.0 Hz, 6 H), 7.29 (d, J = 7.6 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 162.5 (dd, J = 252.1, 17.0 Hz), 130.8 (dd, J = 14.2, 7.4 Hz), 127.7 (dd, J = 9.0, 3.0 Hz), 119.7 (d, J = 21.2 Hz), 118.9 (dd, J = 22.6, 10.6 Hz). 19F NMR (376 MHz, CDCl3): δ = –110.25. 31P NMR (162 MHz, CDCl3): δ = 25.94. HRMS (APCI): m/z [M + H]+ calcd for C18H13F3OP: 333.0650; found: 333.0647. Tris(3,5-dimethylphenyl)phosphine Oxide (2p) Prepared by following the general procedure from tris(3,5-dimethylphenyl)phosphine (1p; 72 mg, 0.20 mmol) as a solid; yield: 92%; mp 205.0–205.8 °C. IR ((KBr): υmax (cm-1)): 2916, 2854, 1598, 1456, 1274, 1193, 1124, 871, 852, 694, 584 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.30 (d, J = 12.0 Hz, 6 H), 7.13 (s, 3 H), 2.31 (s, 18 H). 13C NMR (101 MHz, CDCl3): δ = 138.0 (d, J = 12.7 Hz), 133.5 (d, J = 2.8 Hz), 132.6 (d, J = 103.1 Hz), 129.0 (d, J = 9.8 Hz), 21.3. 31P NMR (162 MHz, CDCl3): δ = 29.68. HRMS (APCI): m/z [M + H]+ calcd for C24H28OP: 363.1872; found: 363.1868. Triethyl Phosphate (2ac) Prepared by following the general procedure from triethyl phosphite (1ac; 36 mg, 0.20 mmol) as a colorless oil; yield: 73%. IR ((neat): υmax (cm-1)): 2929, 2852, 1446, 1274, 1157, 1041, 972, 800, 545 cm–1. 1H NMR (400 MHz, CDCl3): δ = 4.03–3.99 (m, 6 H), 1.24 (t, J = 7.2 Hz, 9 H). 13C NMR (101 MHz, CDCl3): δ = 63.5 (d, J = 5.9 Hz), 16.0 (d, J = 6.7 Hz). 31P NMR (162 MHz, CDCl3): δ = 1.02. HRMS (APCI): m/z [M + H]+ calcd for C6H16O4P: 183.0780; found: 183.0778.