Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin
DOI: 10.1055/a-2197-1104
Originalarbeit

Die Effekte von hochintensivem Intervalltraining in Fällen mit Rekonstruktion des anterioren Kreuzbandes

The Effects of High-Intensity Interval Training in Cases With Anterior Cruciate Ligament Reconstruction
1   Faculty of Health Sciences Physiotherapy and Rehabilitation, Erzurum Technical University, Erzurum, Turkey
,
Nevin Atalay Güzel
2   Faculty of Health Sciences Physiotherapy and Rehabilitation, Gazi University, Ankara, Turkey
,
Nihan Kafa
2   Faculty of Health Sciences Physiotherapy and Rehabilitation, Gazi University, Ankara, Turkey
,
Gökhan Yağiz
3   School of Health and Human Performance, East Carolina University, Greenville, NC, USA
,
Mustafa Odluyurt
4   Medical Faculty, Department of Orthopaedics and Traumatology, Gazi University, Ankara, Turkey
5   Department of Orthopaedics and Traumatology, TC Sağlık Bakanlığı Çaycuma Devlet Hastanesi, Caycuma, Turkey
,
Muhammet Baybars Ataoğlu
4   Medical Faculty, Department of Orthopaedics and Traumatology, Gazi University, Ankara, Turkey
› Author Affiliations

Zusammenfassung

Ziel Ziel dieser Studie ist es, die Auswirkungen eines sechswöchigen (dreimal pro Woche) hochintensiven Intervalltrainings (HIIT) im Wingate-Stil auf Kraft, Propriozeption, Flexibilität, Laxheit, Leistung und Körperzusammensetzung bei Probanden zu untersuchen, die sich einer Rekonstruktion des vorderen Kreuzbandes (ACL) mit der Methode der Oberschenkel-Autotransplantation unterzogen haben.

Material und Methoden Im Rahmen der Studie wurden 29 Freiwillige, die sich vor mindestens sechs Monaten einer autotransplantierten Kreuzbandrekonstruktion der Oberschenkelmuskulatur unterzogen hatten, randomisiert und in zwei Gruppen, HİİT (n=15) und Kontrollgruppen (n=14), aufgeteilt. Nach den ersten Beurteilungen wurde der Wingate-Stil HİİT sechs Wochen lang an drei Tagen in der Woche auf die Versuchsgruppe angewendet. Die Kontrollgruppe setzte ihren normalen Lebensstil und ihre normalen Bewegungsgewohnheiten fort. Nach sechs Wochen erfolgten abschließende Auswertungen. Nach Erhalt der demografischen Informationen der Probanden wurde die Körperzusammensetzung mit Tanita gemessen. Anschließend wurden eine Messung der Knielaxität mit einem GNRB-Arthrometer, 30°- und 60°-Propriozeption mit einem isokinetischen Dynamometer sowie Muskelkraftmessungen (Quadrizeps femoris, Oberschenkelmuskulatur (konzentrisch/exzentrisch) bei 60°/Sek.) und Ausdauermessungen bei 180°/Sek. durchgeführt. Sitz- und Reichweitentest für Flexibilität und Leistungsparameter (Einbeinsprung, Vertikalsprung, Beweglichkeit) wurden gemessen.

Ergebnisse Den Ergebnissen zufolge wurde eine signifikante Abnahme der Körperzusammensetzung ( p < 0,001), Steigerung der Kraft im konzentrischen Quadrizeps (p < 0,001) und der hinteren Oberschenkelmuskulatur (p < 0,001). Eine Verbesserung wurde bei Leistungstests wie < 0,001), Vertikalsprung (p < 0,001), Einbein-Sprungtest (p < 0,001), Beweglichkeit (p < 0,001) und seitlich operierten (30° und 60°) Propriozeptionstests (p < 0) beobachtet .005). Eine bessere Steigerung der exzentrischen Kraft (p > 0,005), eine Steigerung der Ausdauerkraft um 180°/s (p > 0,005) und eine bessere Flexibilität (p > 0,005) traten jedoch bei den Quadrizeps- und Oberschenkelmuskeln nicht besser auf als in der Kontrollgruppe.

Schlussfolgerungen Aufgrund dieser Ergebnisse geht man davon aus, dass HIIT zu aktuellen Physiotherapieprogrammen hinzugefügt werden kann, da es zu positiven Verbesserungen der Körperzusammensetzung, der Wiederherstellung der Muskelkraft, der operierten seitlichen Propriozeption und der Steigerung der Leistungsparameter führt, ohne die Knielaxität nach einer ACL-Rekonstruktion zu erhöhen.

Abstract

Objective This study aims to investigate the effects of six weeks (three times a week) Wingate style high-intensity interval training (HIIT) on strength, proprioception, flexibility, laxity, performance, and body composition in subjects who have undergone anterior cruciate ligament (ACL) reconstruction with the hamstring autograft method.

Material and Methods Within the scope of the study, 29 volunteers who had undergone hamstring autograft ACL reconstruction at least six months ago were randomized and divided into two groups HİİT (n=15) and control (n=14) groups. After the initial assessments, the Wingate style HİİT was applied to the experimental group three days a week for six weeks. The control group continued their normal lifestyle and exercise habits. After six weeks, final evaluations were made. After obtaining the subjects’ demographic information, body composition was measured with Tanita. Then, knee laxity measurement with GNRB arthrometer, 30° and 60° proprioception assessed with an isokinetic dynamometer, muscle strength (quadriceps femoris, hamstring (concentric/eccentric) at 60°/sec and endurance measurements at 180°/sec were performed respectively. Sit and reach test for flexibility and performance (single leg jump, vertical jump, agility) parameters were measured.

Results According to the findings, significant decrease in body composition (p < 0.001), increase in strength in concentric quadriceps (p < 0.001) and hamstring muscles (p < 0.001), Improvement was observed in performance tests such as < 0.001), vertical jump (p < 0.001), single-leg hop test (p < 0.001), agility (p < 0.001), and operated side (30° and 60°) proprioception tests (p < 0.005). However, better eccentric strength increase (p > 0.005), 180°/sec endurance strength increase (p > 0.005), and flexibility (p > 0.005) did not occur in the quadriceps and hamstring muscles better than control group.

Conclusions With these results, it is thought that HIIT can be added to current physiotherapy programs as it provides positive enhancements in body composition, restoring muscle strength, operated side proprioception, and increasing performance parameters without increasing knee laxity after ACL reconstruction.



Publication History

Received: 24 July 2023

Accepted: 20 October 2023

Article published online:
13 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Honl M, Carrero V, Hille E. et al. Bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction: an in vitro comparison of mechanical behavior under failure tensile loading and cyclic submaximal tensile loading. The American journal of sports medicine 2002; 30: 549-557
  • 2 Waldén M, Krosshaug T, Bjørneboe J. et al. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. British journal of sports medicine 2015; 49: 1452-1460
  • 3 Kessler M, Behrend H, Henz S. et al. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surgery, Sports Traumatology, Arthroscopy 2008; 16: 442-448
  • 4 Davies GJ, McCarty E, Provencher M. et al. ACL return to sport guidelines and criteria. Current reviews in musculoskeletal medicine 2017; 10: 307-314
  • 5 Harput G, Kilinc HE, Ozer H. et al. Quadriceps and hamstring strength recovery during early neuromuscular rehabilitation after ACL hamstring-tendon autograft reconstruction. Journal of sport rehabilitation 2015; 24: 398-404
  • 6 Solomonow M, Baratta R, Zhou B. et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. The American journal of sports medicine 1987; 15: 207-213
  • 7 Pelegrinelli AR, Guenka LC, Dias JM. et al. Isokinetic muscle performance after anterior cruciate ligament reconstruction: a case-control study. International journal of sports physical therapy 2018; 13: 882
  • 8 Hohmann E, Tetsworth K, Glatt V. The hamstring/quadriceps ratio is an indicator of function in ACL-deficient, but not in ACL-reconstructed knees. Archives of orthopaedic and trauma surgery 2019; 139: 91-98
  • 9 Buckthorpe M. Optimising the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction. Sports Medicine 2019; 49: 1043-1058
  • 10 Keklik SS, Güzel NA, Çobanoğlu G. et al. Evaluation of proprioception in patients who underwent ACL reconstruction: measurement in functional position. Turkish Journal of Medical Sciences 2021; 51: 2036-2042
  • 11 Kaya D, Yosmaoglu B, Doral MN. Proprioception in orthopaedics, sports medicine and rehabilitation. Springer; 2018
  • 12 Relph N, Herrington L, Tyson S. The effects of ACL injury on knee proprioception: a meta-analysis. Physiotherapy 2014; 100: 187-195
  • 13 Young SW, Valladares RD, Loi F. et al. Mechanoreceptor reinnervation of autografts versus allografts after anterior cruciate ligament reconstruction. Orthopaedic journal of sports medicine 2016; 4: 2325967116668782
  • 14 Angoules A, Mavrogenis A, Dimitriou R. et al. Knee proprioception following ACL reconstruction; a prospective trial comparing hamstrings with bone–patellar tendon–bone autograft. The Knee 2011; 18: 76-82
  • 15 Büyükafşar E, Başar S, Kanatli U. Proprioception following the anterior cruciate ligament reconstruction with tibialis anterior tendon allograft. The Journal of Knee Surgery 2020; 33: 722-727
  • 16 Mir SM, Talebian S, Naseri N. et al. Assessment of knee proprioception in the anterior cruciate ligament injury risk position in healthy subjects: a cross-sectional study. Journal of physical therapy science 2014; 26: 1515-1518
  • 17 Gibala MJ. High-intensity interval training: a time-efficient strategy for health promotion?. Current sports medicine reports 2007; 6: 211-213
  • 18 Feito Y, Heinrich KM, Butcher SJ. et al. High-intensity functional training (HIFT): Definition and research implications for improved fitness. Sports 2018; 6: 76
  • 19 Wewege M, Van Den Berg R, Ward R. et al. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obesity Reviews 2017; 18: 635-646
  • 20 Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L. et al. Effects of different exercise training programs on body composition: A randomized control trial. Scandinavian Journal of Medicine & Science in Sports 2019; 29: 968-979
  • 21 Gremeaux V, Drigny J, Nigam A. et al. Long-term lifestyle intervention with optimized high-intensity interval training improves body composition, cardiometabolic risk, and exercise parameters in patients with abdominal obesity. American Journal of Physical Medicine & Rehabilitation 2012; 91: 941-950
  • 22 Heinrich KM, Becker C, Carlisle T. et al. High-intensity functional training improves functional movement and body composition among cancer survivors: a pilot study. European journal of cancer care 2015; 24: 812-817
  • 23 Heinrich KM, Spencer V, Fehl N. et al. Mission essential fitness: comparison of functional circuit training to traditional Army physical training for active duty military. Military medicine 2012; 177: 1125-1130
  • 24 MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. The Journal of physiology 2017; 595: 2915-2930
  • 25 Milanović Z, Sporiš G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports medicine 2015; 45: 1469-1481
  • 26 Rudolph KS, Axe MJ, Buchanan TS. et al. Dynamic stability in the anterior cruciate ligament deficient knee. Knee surgery, sports traumatology, arthroscopy 2001; 9: 62-71
  • 27 Bieler T, Aue Sobol N, Andersen LL. et al. The effects of high-intensity versus low-intensity resistance training on leg extensor power and recovery of knee function after ACL-reconstruction. BioMed research international 2014; 2014
  • 28 Yosmaoglu H, Baltaci G, Kaya D. et al. Comparison of functional outcomes of two anterior cruciate ligament reconstruction methods with hamstring tendon graft. Acta orthopaedica et traumatologica turcica 2011; 45: 240-247
  • 29 Burgomaster KA, Heigenhauser GJ, Gibala MJ. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Journal of applied physiology 2006; 100: 2041-2047
  • 30 Christensen PM, Krustrup P, Gunnarsson TP. et al. VO2 kinetics and performance in soccer players after intense training and inactivity. Medicine and science in sports and exercise 2011; 43: 1716-1724
  • 31 Little JP, Gillen JB, Percival ME. et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of applied physiology 2011; 111: 1554-1560
  • 32 Jacobs RA, Flück D, Bonne TC. et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Journal of applied physiology. 2013
  • 33 Mayorga-Vega D, Merino-Marban R, Viciana J. Criterion-related validity of sit-and-reach tests for estimating hamstring and lumbar extensibility: a meta-analysis. Journal of sports science & medicine 2014; 13: 1
  • 34 Baynaz K, Acar K, Çinibulak E. et al. The effect of high intensity interval training on flexibility and anaerobic power Yüksek yoğunluklu interval antrenmanın esneklik ve anaerobik kapasite üzerine etkisi. Journal of Human Sciences 2017; 14: 4088-4096
  • 35 Howard N, Stavrianeas S. In-season high-intensity interval training improves conditioning in high school soccer players. International journal of exercise science 2017; 10: 713
  • 36 Burgomaster KA, Howarth KR, Phillips SM. et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of physiology 2008; 586: 151-160
  • 37 Bar-Or O. The Wingate anaerobic test an update on methodology, reliability and validity. Sports medicine 1987; 4: 381-394
  • 38 Arikan H, Maras G, Akaras E. et al. Development, reliability and validity of the Closed Kinetic Chain Lower Extremity Stability Test (CKCLEST): a new clinical performance test. Research in Sports Medicine 2022; 30: 475-490 DOI: 10.1080/15438627.2021.1906674.
  • 39 Yazici G, Volkan M, Çobanoğlu G. et al. The reliability of a wearable movement analysis system (G-walk) on gait and jump assessment in healthy adults. Journal of Exercise Therapy and Rehabilitation 2020; 7: 159-167
  • 40 Cengizhan PA, Cobanoglu G, Gökdoğan ÇM. et al. The relationship between postural stability, core muscle endurance and agility in professional basketball players. 2019
  • 41 Fridén T, Roberts D, Zätterström R. et al. Proprioception in the nearly extended knee: measurements of position and movement in healthy individuals and in symptomatic anterior cruciate ligament injured patients. Knee Surgery, Sports Traumatology, Arthroscopy 1996; 4: 217-224
  • 42 Jenny J-Y, Puliero B, Schockmel G. et al. Experimental validation of the GNRB® for measuring anterior tibial translation. Orthopaedics & Traumatology: Surgery & Research 2017; 103: 363-366
  • 43 Baltaci G, Un N, Tunay V. et al. Comparison of three different sit and reach tests for measurement of hamstring flexibility in female university students. British journal of sports medicine 2003; 37: 59-61
  • 44 Kruse L, Gray B, Wright R. Rehabilitation after anterior cruciate ligament reconstruction: a systematic review. The Journal of bone and joint surgery American volume 2012; 94: 1737
  • 45 Wilk KE, Macrina LC, Cain EL. et al. Recent advances in the rehabilitation of anterior cruciate ligament injuries. journal of orthopaedic & sports physical therapy 2012; 42: 153-171
  • 46 Thomeé R, Neeter C, Gustavsson A. et al. Variability in leg muscle power and hop performance after anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy 2012; 20: 1143-1151
  • 47 Keays SL, Bullock-Saxton JE, Keays AC. et al. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction. The American journal of sports medicine 2007; 35: 729-739
  • 48 Can S. Sedanter Davranış, Adım Sayısı ve Sağlık. Spor Hekimligi Dergisi/Turkish Journal of Sports Medicine 2019; 54
  • 49 Kluczynski MA, Bisson LJ, Marzo JM. Does body mass index affect outcomes of ambulatory knee and shoulder surgery?. Arthroscopy: The Journal of Arthroscopic & Related Surgery 2014; 30: 856-865
  • 50 Rosenberger PH, Dhabhar FS, Epel E. et al. Sex differences in factors influencing recovery from arthroscopic knee surgery. Clinical Orthopaedics and Related Research® 2010; 468: 3399-3405
  • 51 Maillard F, Pereira B, Boisseau N. Effect of high-intensity interval training on total, abdominal and visceral fat mass: a meta-analysis. Sports Medicine 2018; 48: 269-288
  • 52 Su L, Fu J, Sun S. et al. Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: A meta-analysis. PloS one 2019; 14: e0210644
  • 53 Shehata A, Mahmoud I. Effect of high intensity interval training (hiit) onweight, body mass index and body fat percentage for adults. Science, Movement and Health 2018; 18: 2018
  • 54 Khammassi M, Ouerghi N, Hadj-Taieb S. et al. Impact of a 12-week high-intensity interval training without caloric restriction on body composition and lipid profile in sedentary healthy overweight/obese youth. Journal of exercise rehabilitation 2018; 14: 118
  • 55 Kaya D, Calik M, Callaghan MJ. et al. Proprioception after knee injury, surgery and rehabilitation. In: Proprioception in Orthopaedics, Sports Medicine and Rehabilitation. Springer; 2018: 123-142
  • 56 Zimny ML, Schutte M, Dabezies E. Mechanoreceptors in the human anterior cruciate ligament. The Anatomical Record 1986; 214: 204-209
  • 57 Gao F, Zhou J, He C. et al. A morphologic and quantitative study of mechanoreceptors in the remnant stump of the human anterior cruciate ligament. Arthroscopy: The Journal of Arthroscopic & Related Surgery 2016; 32: 273-280
  • 58 Nagelli CV, Hewett TE. Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports medicine 2017; 47: 221-232
  • 59 Rymer T, Kruczyński J. Knee joint proprioception evaluation with own construction device. Chirurgia Narzadow Ruchu i Ortopedia Polska 2007; 72: 189-192
  • 60 Kim H-J, Lee J-H, Lee D-H. Proprioception in patients with anterior cruciate ligament tears: a meta-analysis comparing injured and uninjured limbs. The American journal of sports medicine 2017; 45: 2916-2922
  • 61 Kapreli E, Athanasopoulos S. The anterior cruciate ligament deficiency as a model of brain plasticity. Medical hypotheses 2006; 67: 645-650
  • 62 Arumugam A, Björklund M, Mikko S. et al. Effects of neuromuscular training on knee proprioception in individuals with anterior cruciate ligament injury: a systematic review and GRADE evidence synthesis. BMJ open 2021; 11: e049226
  • 63 Pincivero DM, Bachmeier B, Coelho AJ. The effects of joint angle and reliability on knee proprioception. Medicine and science in sports and exercise 2001; 33: 1708-1712
  • 64 Fleming JD, Ritzmann R, Centner C. Effect of an Anterior Cruciate Ligament Rupture on Knee Proprioception Within 2 Years After Conservative and Operative Treatment: A Systematic Review with Meta-Analysis. Sports Medicine 2021; 1-12
  • 65 Curran MT, Bedi A, Mendias CL. et al. Blood flow restriction training applied with high-intensity exercise does not improve quadriceps muscle function after anterior cruciate ligament reconstruction: a randomized controlled trial. The American Journal of Sports Medicine 2020; 48: 825-837
  • 66 Keays SL, Newcombe PA, Bullock-Saxton JE. et al. Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. The American journal of sports medicine 2010; 38: 455-463
  • 67 Akcan İO, Aydos L, Akgül MŞ. The Effect of High Intensity Interval Training in Different Forms Applied to Combat Athletes on Body Composition and Muscular Strength. Turkish Journal of Sport and Exercise 2020; 22: 196-201
  • 68 Ohta H, Kurosawa H, Ikeda H. et al. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthopaedica Scandinavica 2003; 74: 62-68
  • 69 Pamukoff DN, Pietrosimone BG, Ryan ED. et al. Quadriceps function and hamstrings co-activation after anterior cruciate ligament reconstruction. Journal of athletic training 2017; 52: 422-428
  • 70 Tashiro T, Kurosawa H, Kawakami A. et al. Influence of medial hamstring tendon harvest on knee flexor strength after anterior cruciate ligament reconstruction: a detailed evaluation with comparison of single-and double-tendon harvest. The American journal of sports medicine 2003; 31: 521-529
  • 71 Schuenke MD, Mikat RP, McBride JM. Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: implications for body mass management. European journal of applied physiology 2002; 86: 411-417
  • 72 Gaesser GA, Brooks CA. Metabolic bases of excess post-exercise oxygen. Medicine and science in sports and exercise 1984; 16: 29-43
  • 73 Minahan C, Wood C. Strength training improves supramaximal cycling but not anaerobic capacity. European journal of applied physiology 2008; 102: 659-666
  • 74 Loveless DJ, Weber CL, Haseler LJ. et al. Maximal leg-strength training improves cycling economy in previously untrained men. Medicine and science in sports and exercise 2005; 37: 1231
  • 75 McCarthy JP, Agre JC, Graf BK. et al. Compatibility of adaptive responses with combining strength and endurance training. Medicine and science in sports and exercise 1995; 27: 429-436
  • 76 Astorino TA, Allen RP, Roberson DW. et al. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. The Journal of Strength & Conditioning Research 2012; 26: 138-145
  • 77 Sabag A, Najafi A, Michael S. et al. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: a systematic review and meta-analysis. Journal of sports sciences 2018; 36: 2472-2483
  • 78 Gerber JP, Marcus RL, Dibble LE. et al. Effects of early progressive eccentric exercise on muscle size and function after anterior cruciate ligament reconstruction: a 1-year follow-up study of a randomized clinical trial. Physical therapy 2009; 89: 51-59
  • 79 Lepley LK, Wojtys EM, Palmieri-Smith RM. Combination of eccentric exercise and neuromuscular electrical stimulation to improve quadriceps function post-ACL reconstruction. The Knee 2015; 22: 270-277
  • 80 Ayala F, de Baranda PS, Croix MDS. et al. Absolute reliability of five clinical tests for assessing hamstring flexibility in professional futsal players. Journal of Science and Medicine in Sport 2012; 15: 142-147
  • 81 van der Horst N, Priesterbach A, Backx F. et al. Hamstring-and-lower-back flexibility in male amateur soccer players. Clinical journal of sport medicine 2017; 27: 20-25
  • 82 Robert H, Nouveau S, Gageot S. et al. A new knee arthrometer, the GNRB®: experience in ACL complete and partial tears. Orthopaedics & Traumatology: Surgery & Research 2009; 95: 171-176
  • 83 Hewett TE, Myer GD, Ford KR. et al. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. Journal of Orthopaedic Research 2016; 34: 1843-1855
  • 84 Abrams GD, Harris JD, Gupta AK. et al. Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthopaedic journal of sports medicine 2014; 2: 2325967113518305
  • 85 Gustavsson A, Neeter C, Thomeé P. et al. A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee surgery, sports traumatology, arthroscopy 2006; 14: 778-788
  • 86 Phillips N, Benjamin M, Everett T. et al. Outcome and progression measures in rehabilitation following anterior cruciate ligament injury. Physical Therapy in Sport 2000; 1: 106-118
  • 87 Bremander A, Dahl L, Roos E. Validity and reliability of functional performance tests in meniscectomized patients with or without knee osteoarthritis. Scandinavian journal of medicine & science in sports 2007; 17: 120-127
  • 88 Hegedus EJ, McDonough S, Bleakley C. et al. Clinician-friendly lower extremity physical performance measures in athletes: a systematic review of measurement properties and correlation with injury, part 1. The tests for knee function including the hop tests. British journal of sports medicine 2015; 49: 642-648
  • 89 Van Grinsven S, Van Cingel R, Holla C. et al. Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy 2010; 18: 1128-1144
  • 90 Krafft FC, Stetter BJ, Stein T. et al. How does functionality proceed in ACL reconstructed subjects? Proceeding of functional performance from pre-to six months post-ACL reconstruction. PloS one 2017; 12: e0178430
  • 91 Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. The American journal of sports medicine 1991; 19: 513-518
  • 92 Greenberg EM, Dyke J, Leung A. et al. Uninjured youth athlete performance on single-leg hop testing: How many can achieve recommended return-to-sport criterion?. Sports Health 2020; 12: 552-558
  • 93 Harput G, Ulusoy B, Ozer H. et al. External supports improve knee performance in anterior cruciate ligament reconstructed individuals with higher kinesiophobia levels. The Knee 2016; 23: 807-812
  • 94 Toumi H, Best T, Martin A. et al. Effects of eccentric phase velocity of plyometric training on the vertical jump. International journal of sports medicine 2004; 25: 391-398
  • 95 Chmielewski TL, George SZ, Tillman SM. et al. Low-versus high-intensity plyometric exercise during rehabilitation after anterior cruciate ligament reconstruction. The American journal of sports medicine 2016; 44: 609-617
  • 96 Helgerud J, Engen LC, Wisloff U. et al. Aerobic endurance training improves soccer performance. Medicine and science in sports and exercise 2001; 33: 1925-1931
  • 97 Suydam SM, Cortes DH, Axe MJ. et al. Semitendinosus tendon for ACL reconstruction: regrowth and mechanical property recovery. Orthopaedic journal of sports medicine 2017; 5: 2325967117712944
  • 98 Królikowska A, Sikorski Ł, Czamara A. et al. Effects of postoperative physiotherapy supervision duration on clinical outcome, speed, and agility in males 8 months after anterior cruciate ligament reconstruction. Medical science monitor: international medical journal of experimental and clinical research 2018; 24: 6823
  • 99 Sheppard JM, Young WB. Agility literature review: Classifications, training and testing. Journal of sports sciences 2006; 24: 919-932
  • 100 Kirsch AN, Bodkin SG, Saliba SA. et al. Measures of agility and single-legged balance as clinical assessments in patients with anterior cruciate ligament reconstruction and healthy individuals. Journal of Athletic Training 2019; 54: 1260-1268
  • 101 Brown L, Ferrigno V. Training for speed, agility, and quickness, 3E. Human Kinetics. 2014
  • 102 Chu DA, Meyer GC. Plyometrics. Human kinetics. 2013
  • 103 Monks L, Seo M-W, Kim H-B. et al. High-intensity interval training and athletic performance in Taekwondo athletes. The Journal of sports medicine and physical fitness 2017; 57: 1252-1260
  • 104 Arslan E, Orer GE, Clemente FM. Running-based high-intensity interval training vs. small-sided game training programs: effects on the physical performance, psychophysiological responses and technical skills in young soccer players. Biology of Sport 2020; 37: 165
  • 105 Kilit B, Arslan E. Effects of high-intensity interval training vs. on-court tennis training in young tennis players. The Journal of Strength & Conditioning Research 2019; 33: 188-196