Synthesis 2024; 56(02): 275-280
DOI: 10.1055/a-2182-9098
paper

Lewis Acid Catalyzed 4π-Electrocyclization of Donor–Acceptor Stenhouse Adducts

Seung Hyeon Yoon
a   Department of Applied Biology and Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
,
Kye Sung Park
b   Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
,
Jaehee Kim
b   Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
,
Yonghoon Kwon
a   Department of Applied Biology and Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
b   Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
› Institutsangaben
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. RS-2023-00207820).


Abstract

Lewis acid catalyzed 4π-electrocyclization of Donor–Acceptor Stenhouse Adducts (DASAs) has been developed. By employing catalytic quantities of Dy(OTf)3, a highly efficient transformation of acyclic DASAs into the corresponding cyclized isomers was achieved. Notably, this transformation exhibited exceptional yields, particularly in the case of first generation DASAs. In addition, Lewis acid catalysis enabled one-pot synthesis of the cyclopentenone product from the ‘donor’ and ‘acceptor’ components.

Supporting Information



Publikationsverlauf

Eingereicht: 11. September 2023

Angenommen nach Revision: 27. September 2023

Accepted Manuscript online:
27. September 2023

Artikel online veröffentlicht:
30. Oktober 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Helmy S, Leibfarth FA, Oh S, Poelma JE, Hawker CJ, Read de Alaniz J. J. Am. Chem. Soc. 2014; 136: 8169
  • 2 Helmy S, Oh S, Leibfarth FA, Hawker CJ, Read de Alaniz J. J. Org. Chem. 2014; 79: 11316
  • 3 Hemmer JR, Poelma SO, Treat N, Page ZA, Dolinski ND, Diaz YJ, Tomlinson W, Clark KD, Hooper JP, Hawker C. J. Am. Chem. Soc. 2016; 138: 13960
  • 4 Hemmer JR, Page ZA, Clark KD, Stricker F, Dolinski ND, Hawker CJ, Read de Alaniz J. J. Am. Chem. Soc. 2018; 140: 10425

    • For selected examples, see:
    • 5a Sinawang G, Wu B, Wang J, Li S, He Y. Macromol. Chem. Phys. 2016; 217: 2409
    • 5b Chen Q, Diaz YJ, Hawker MC, Martinez MR, Page ZA, Xiao-An Zhang S, Hawker CJ, Read de Alaniz J. Macromolecules 2019; 52: 4370
    • 5c Wesseler JP, Cameron GM, Cormack PA. G, Bruns N. Polym. Chem. 2023; 14: 1456
  • 6 Ahrens J, Bian T, Vexler T, Klajn R. ChemPhotoChem 2017; 1: 230
  • 7 Castagna R, Maleeva G, Pirovano D, Matera C, Gorostiza P. J. Am. Chem. Soc. 2022; 144: 15595

    • For selected examples, see:
    • 8a Jia S, Tan A, Hawley A, Graham B, Boyd BJ. J Colloid Interface Sci. 2019; 548: 151
    • 8b Yap JE, Zhang L, Lovegrove JT, Beves JE, Stenzel MH. Macromol. Rapid Commun. 2020; 41: 2000236
    • 9a Lerch MM, Wezenberg SJ, Szymanski W, Feringa BL. J. Am. Chem. Soc. 2016; 138: 6345
    • 9b Peñín B, Sanosa N, Sampedro D, Funes-Ardoiz I. ACS Omega 2022; 7: 22811
  • 10 Lerch MM, Szymański W, Feringa BL. Chem. Soc. Rev. 2018; 47: 1913
  • 11 Laramie MD, Levitz A, Henary M. Sens. Actuators B: Chem. 2017; 243: 1191
  • 12 For a review, see: Thompson S, Coyne AG, Knipe PC, Smith MD. Chem. Soc. Rev. 2011; 40: 4217

    • For selected examples, see:
    • 13a Hutson GE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 4988
    • 13b Ouyang J, Kennemur JL, Kanta De C, Farès C, List B. J. Am. Chem. Soc. 2019; 141: 3414

      For reviews, see:
    • 14a Vinogradov MG, Turova OV, Zlotin SG. Org. Biomol. Chem. 2017; 15: 8245
    • 14b Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
  • 15 Šafář P, Považanec F, Prónayová N, Baran P, Kickelbick G, Kožíšek J, Breza M. Coll. Czech. Chem. Commun. 2000; 65: 1916

    • For selected examples, see:
    • 16a Wei Z, Zhang J, Yang H, Jiang G. Org. Lett. 2019; 21: 2790
    • 16b Gouse S, Reddy NR, Baskaran S. Org. Lett. 2019; 21: 3822