Pneumologie 2024; 78(03): 191-198
DOI: 10.1055/a-2142-7701
Originalarbeit

Der obere Atemweg bei OSA-Patienten ist auch im Wachzustand pathologisch

The upper airway in obstructive sleep apnea patients is pathological even when awake
Mikail Aykut Degerli
1   Pneumologie, Philipps-Universität Marburg, Marburg, Deutschland (Ringgold ID: RIN9377)
,
1   Pneumologie, Philipps-Universität Marburg, Marburg, Deutschland (Ringgold ID: RIN9377)
,
Karl Kesper
1   Pneumologie, Philipps-Universität Marburg, Marburg, Deutschland (Ringgold ID: RIN9377)
,
Olaf Hildebrandt
1   Pneumologie, Philipps-Universität Marburg, Marburg, Deutschland (Ringgold ID: RIN9377)
,
Regina Conradt
2   Fachbereich Gesundheit, Technische Hochschule Mittelhessen, Gießen, Deutschland (Ringgold ID: RIN38885)
,
Niklas Koehler
3   Regulatory Affairs, ThoraTech GmbH, Gießen, Deutschland
,
Manuel Stenger
2   Fachbereich Gesundheit, Technische Hochschule Mittelhessen, Gießen, Deutschland (Ringgold ID: RIN38885)
,
Wulf Hildebrandt
4   Institut für Anatomie und Zellbiologie, Philipps-Universität Marburg, Marburg, Deutschland (Ringgold ID: RIN9377)
,
Janine Sambale
5   Kieferorthopädie, Philipps-Universitat Marburg, Marburg, Deutschland (Ringgold ID: RIN9377)
› Author Affiliations

Zusammenfassung

Die obstruktive Schlafapnoe (OSA) ist charakterisiert durch eine partielle bzw. komplette Obstruktion des pharyngealen Atemwegs. Prinzipiell kann man anatomische von nicht-anatomischen Faktoren unterscheiden. Alter und Adipositas stellen die Hauptrisikofaktoren für OSA dar, dennoch sind etwa 50% der Patienten nicht adipös. Im höheren Alter (>60 Jahre) nimmt der Stellenwert der Adipositas ab, es werden vermehrt normgewichtige Patienten mit OSA gefunden. Durch Effekte der chronisch intermittierenden Hypoxämie, der Low-grade-Inflammation, des erhöhten Sympathikotonus sowie der mechanischen Beanspruchung kommt es zu einer Muskelfasertransformation im oberen Atemweg mit verminderter Muskelmasse und -kraft. Seltener auftretende nicht-anatomische Faktoren sind ein reduzierter muskulärer Tonus, eine erhöhte Arousalschwelle sowie eine veränderte Sensibilität der Chemorezeptoren auf CO2.

Abstract

Obstructive sleep apnea (OSA) is characterized by partial or complete obstruction of the pharyngeal airway. Anatomical factors can be distinguished from non-anatomical factors. Age and obesity are the main risk factors for OSA; however, approximately 50% of patients are not obese. In older patients (>60 years), the importance of obesity decreases. There is an increased prevalence of OSA among patients with normal weight. The effects of chronic intermittent hypoxemia, low-grade inflammation, increased sympathetic tone and mechanical stress contribute to a transformation of muscle fibers in the upper airway, resulting in reduced muscle mass and strength. Less frequently encountered non-anatomical factors include decreased muscle tone, increased arousal threshold, and altered sensitivity of CO2 chemoreceptors.



Publication History

Received: 26 May 2023

Accepted after revision: 10 July 2023

Article published online:
30 August 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Edwards BA, Wellman A, Sands SA. et al. Obstructive Sleep Apnea in Older Adults is a Distinctly Different Physiological Phenotype. Sleep 2014; 37: 1227-1236 DOI: 10.5665/sleep.3844. (PMID: 25061251)
  • 2 Genta PR, Schorr F, Eckert DJ. et al. Upper airway collapsibility is associated with obesity and hyoid position. Sleep 2014; 37: 1673-1678
  • 3 Genta PR, Schorr F, Edwards BA. et al. Discriminating the severity of pharyngeal collapsibility in men using anthropometric and polysomnographic indices. J Clin Sleep Med 2020; 16: 1531-1537 DOI: 10.5664/jcsm.8600. (PMID: 32441245)
  • 4 Malhotra A, Huang Y, Fogel R. et al. Age influences on pharyngeal anatomy and physiology: the predisposition to pharyngeal collapse. Am J Med 2006; 119: 72.e9-72.e14
  • 5 Kirkness JP, Schwartz AR, Schneider H. et al. Contribution of male sex, and obesity to mechanical instability of the upper airway during sleep. J Appl Physiol 2008; 104: 1618-1624
  • 6 Oliveira MC, Tufik S, Haddad FL. Systematic Evaluation of the Upper Airway in a Sample Population: Factors Associated with Obstructive Sleep Apnea Syndrome. Otolaryngol Head Neck Surg 2015; 153: 663-670
  • 7 Li Y, Lin N, Ye J. et al. Upper Airway Fat Tissue Distribution in Subjects With Obstructive Sleep Apnea and Its Effect on Retropalatal Mechanical Loads. Respir Care 2012; 57: 1098-1105
  • 8 Schwab RJ, Kim C, Bagchi S. et al. Understanding the Anatomic Basis for Obstructive Sleep Apnea syndrome in Adolescents. Am J Respir Crit Care Med 2015; 191: 1295-1309 DOI: 10.1164/rccm.201501-0169OC. (PMID: 25835282)
  • 9 Osman AM, Carter SG, Carberry JC. et al. Obstructive sleep apnea: current perspectives. Nature and Science of Sleep 2018; 10: 21-34 DOI: 10.2147/NSS.S124657. (PMID: 29416383)
  • 10 Zinchuk A, Gentry M, Concato J. et al. Phenotypes in obstructive sleep apnea: a definition, examples and evolution of approaches. Sleep Med Rev 2017; 35: 113-123 DOI: 10.1016/j.smrv.2016.10.002. (PMID: 27815038)
  • 11 Petrof BJ, Pack AI, Kelly AM. et al. Pharyngeal myopathy of loaded upper airways in dogs with sleep apnea. J Appl Physiol 1994; 76: 1746-1752
  • 12 Schäfer T. Pathophysiologie der Atmung unter besonderer Berücksichtigung schlafbezogener Atmungstörungen. Laryngo-Rhino-Otol 2006; 85: 1-10
  • 13 Kimoff J, Sforza E, Champagne V. et al. Upper airway sensation in snoring and obstructive sleep apnea. Am J of Respir Crit Care Med 2001; 164: 250-255 DOI: 10.1164/ajrccm.164.2.2010012. (PMID: 11463596)
  • 14 D’Angelo GF, Mello AA, Schorr F. et al. Muscle and visceral fat infiltration: A potential mechanism to explain the worsening of obstructive sleep apnea with age. Sleep Medicine 2023; 104: 42-48
  • 15 Wu R, Delahunt E, Ditroilo M. et al. Effects of age and sex on neuromuscular-mechanical determinants of muscle strength. AGE 2016; 38: 57 DOI: 10.1007/s11357-016-9921-2. (PMID: 27189591)
  • 16 Piovezan RD, Yu S, Hirotsu C. et al. Associations of indicators of sleep impairment and disorders with low muscle strength in middle-aged and older adults: The Hypno Laus cohort study. Maturitas 2022; 164: 52-59
  • 17 Oliven R, Cohen G, Dotan Y. et al. Alteration in upper airway dilator muscle coactivation during sleep: comparison of patients with obstructive sleep aonea and healthy subjects. J Appl Physiol 2018; 124: 421-429
  • 18 Narici MV, Mafulli N. Sarcopenia: characteristics, mechanisms and functional significance. British Medical Bulletin 2010; 95: 139-159
  • 19 Bixler Eo, Vgontzas AN, Lin HM. et al. Prevalence of Sleep-disordered Breathing in Women. Effects of Gender. Am J Respir Crit Care Med 2001; 163: 608-613 DOI: 10.1164/ajrccm.163.3.9911064. (PMID: 11254512)
  • 20 Campos-Rodriguez F, Queipo-Corona C, Carmona-Bernal C. et al. Continuous Positive Airway Pressure Improves Quality of Life in Women with Obstructive Sleep Apnea. Am J Respir Crit Care Med 2016; 194: 1286-1294
  • 21 Silva Dantas DA, Mauad T. et al. The Extracellular Matrix of the Lateral Pharyngeal Wall in Obstructice Sleep Apnea. Sleep 2012; 35: 483-490
  • 22 Boyd JH, Petrof BJ, Qutayba H. et al. Upper Airway Muscle Inflammation and Denervation Changes in Obstructive Sleep Apnea. Am J Respir Crit Care Med 2004; 170: 541-546
  • 23 Schiaffino S. Fibre types in skeletal muscle: a personal account. Acta physiologica 2010; 199: 451-463 DOI: 10.1111/j.1748-1716.2010.02130.x. (PMID: 20353491)
  • 24 Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiological Reviews 2011; 91: 1447-1531 DOI: 10.1152/physrev.00031.2010. (PMID: 22013216)
  • 25 Erturk N, Celik A, Kutukcu-Calik E. High- and low-intensity expiratory musle strength training in patients with severe obstructive sleep apnea syndrome using non-invasive mechanical ventilation: A double-blinded, randomized controlled trial. Heart and Lung 2023; 61: 29-35
  • 26 Erturk N, Kutukcu-Calik E, Arikan H. et al. The effectiveness of oropharyngeal exercises compared to inspiratory muscle training in obstructive sleep apnea: A randomized controlled trial. Heart and Lung 2020; 49: 940-948
  • 27 Sousa AS, Pereira da Rocha A, Brandaro Tavares DR. et al. Respiratory muscle training for obstructive sleep apnea: Systematic review and meta-analysis. J Sleep Res 2023; e13941: 1-27
  • 28 Pae EK, Wu J, Nguyen D. et al. Geniohyoid muscle properties and myosin heavy chain composition are altered after short-term intermittent hypoxic exposure. J Appl Physiol 2005; 98: 889-894 DOI: 10.1152/japplphysiol.00978.2004. (PMID: 15557011)
  • 29 Kimoff RJ, Hamid Q, Divangahi M. et al. Increased upper airway cytokines and oxidative stress in severe obstructive sleep apnoea. Eur Respir J 2011; 38: 89-97 DOI: 10.1183/09031936.00048610. (PMID: 20847078)
  • 30 Sauleda J, Garcia-Palmer FJ, Tarraga S. et al. Skeletal muscle changes in patients with obstructive sleep apnoea. Respiratory Medicine 2003; 97: 804-810
  • 31 Series FJ, Simoneau SA, St Pierre S. et al. Characteristics in the genioglossus and musculus uvulae in sleep apnea hypopnea syndrome and in snorers. Am J Respir Crit Care Med 1996; 153: 1870-1874
  • 32 Carrera M, Barbe F, Sauleda J. et al. Patients with obstructive sleep apnea exhibit genioglossus dysfunction that is normalized after treatment with CPAP. Am J Respir Crit Care Med 1999; 159: 1960-1966
  • 33 Fassbender P, Herbstreit F, Eikermann M. et al. Obstruktive Schlafapnoe – ein perioperativer Risikofaktor. Dtsch Ärztebl Int 2016; 113: 463-469
  • 34 Osman AM, Carberry JC, Burke PG. et al. Upper airway collapsibility measured using a simple wakefulness test closely relates to the pharyngeal critical closure pressure during sleep in obstructice sleep apnea. Sleep J 2019; 42: 1-10
  • 35 Hirata RP, Schorr F, Kayamori F. et al. Upper Airwa Collapsibility Assessed by Negative Expiratory Pressure while Awake is Associated with Upper Airway Anatomy. J Clin Sleep Med 2016; 12: 1339-1346