Synlett 2024; 35(04): 367-378
DOI: 10.1055/a-2136-3609
account
11th Singapore International Chemistry Conference (SICC-11)

Acetate/Alkoxide/Halide Shuttle Systems Mediated by Lewis Acid Catalysts for Insertion Reaction of a One-Carbon Unit into Carbon–Carbon or Carbon–Halogen Bonds

a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
,
Makoto Yasuda
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
› Institutsangaben
This work was supported by the Core Research for Evolutional Science and Technology, Core Research for Evolutional Science and Technology (JST CREST; Grant Number JPMJCR20R3), Japan, and a Grant-in-Aid for Transformative Research Areas (A) (21H05212) Digitalization-driven Transformative Organic Synthesis (Digi-TOS) from the Ministry of Education, Culture, Sports, Science & Technology, Japan. It was also supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (grant number JP19K05455).


Abstract

In this account, we describe our research on a Lewis acid-catalyzed insertion reaction of α-diazo esters into a carbon–carbon or carbon–halogen bond. Indium catalysts mediated not only the insertion of α-diazo esters into a carbon–carbon bond of alkyl acetates, alkyl ethers, acetals, and alkyl halides, but also a carbon–halogen bond of alkyl chlorides, bromides, and iodides. BF3 specifically accelerated the insertion of α-diazo esters into a carbon–fluorine bond. The key to this catalysis is acetate, alkoxide, and halide shuttle systems mediated by a Lewis acid, in which the Lewis acid abstracts a leaving group from a starting substrate and releases the leaving group to the appropriate carbocation intermediate in the catalytic cycle.

1 Introduction

2 Acetate/Alkoxide Shuttle: Insertion Reaction of α-Diazo Esters into a Carbon–Carbon Bond of Alkyl Acetates, Alkyl Ethers, and Acetals

3 Halide Shuttle: Insertion Reaction of α-Diazo Esters into a Carbon–Carbon Bond of Alkyl Halides

4 Halide Shuttle: Insertion of α-Diazo Esters into a Carbon–Halogen Bond of Alkyl Halides

5 Conclusion



Publikationsverlauf

Eingereicht: 30. April 2023

Angenommen nach Revision: 24. Juli 2023

Accepted Manuscript online:
24. Juli 2023

Artikel online veröffentlicht:
11. September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Pioneering works:
    • 1a Doering W. vonE, Hoffmann AK. J. Am. Chem. Soc. 1954; 76: 6162
    • 1b DeMore WB, Pritchard HO, Davidson N. J. Am. Chem. Soc. 1959; 81: 5874
    • 1c Doering W. vonE, Mole T. Tetrahedron 1960; 10: 65

      Selected reviews:
    • 3a Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
    • 3b Comprehensive Organometallic Chemistry, 3rd ed. Michael D, Mingos P, Crabtree RH. Elsevier Ltd; Amsterdam: 2007

      Selected reviews:
    • 4a Candeias NR, Paterna R, Gois PM. P. Chem. Rev. 2016; 116: 2937
    • 4b Guttenberger N, Breinbauer R. Tetrahedron 2017; 73: 6815
    • 4c Ciszewski ŁW, Rybicka-Jasińska K, Gryko D. Org. Biomol. Chem. 2019; 17: 432
    • 4d Empel C, Koenigs RM. Synlett 2019; 30: 1929
    • 5a Kanemasa S, Kanai T, Araki T, Wada E. Tetrahedron Lett. 1999; 40: 5055
    • 5b Dudley ME, Morshed MM, Brennan CL, Islam MS, Ahmad MS, Atuu M, Branstetter B, Hossain MM. J. Org. Chem. 2004; 69: 7599
    • 5c Dudley ME, Morshed MM, Hossain MM. Synthesis 2006; 1711
    • 5d Hashimoto T, Naganawa Y, Maruoka K. J. Am. Chem. Soc. 2008; 130: 2434
    • 5e Moebius DC, Kingsbury JS. J. Am. Chem. Soc. 2009; 131: 878
    • 5f Fructos MR, Díaz-Requejo MM, Pérez PJ. Chem. Commun. 2009; 5153
    • 5g Alves LG, Dazinger G, Veiros LF, Kirchner K. Eur. J. Inorg. Chem. 2010; 3160
    • 5h Levesque P, Fournier P. J. Org. Chem. 2010; 75: 7033
    • 5i Rendina VL, Moebius DC, Kingsbury JS. Org. Lett. 2011; 13: 2004
    • 5j Gao L, Kang BC, Ryu DH. J. Am. Chem. Soc. 2013; 135: 14556
    • 5k Gao L, Kang BC, Hwang GS, Ryu DH. Angew. Chem. Int. Ed. 2012; 51: 8322
    • 5l Tan F, Pu M, He J, Li J, Yang J, Dong S, Liu X, Wu YD, Feng X. J. Am. Chem. Soc. 2021; 143: 2394
    • 5m Bomio C, Kabeshov MA, Lit AR, Lau SH, Ehlert J, Battilocchio C, Ley SV. Chem. Sci. 2017; 8: 6071
    • 5n Gini A, Bamberger J, Luis-Barrera J, Zurro M, Mas-Ballesté R, Alemán J, Mancheño OG. Adv. Synth. Catal. 2016; 358: 4049
    • 5o Stockerl S, Danelzik T, Piekarski DG, Mancheño OG. Org. Lett. 2019; 21: 4535
    • 5p Courant T, Pasco M, Lecourt T. Org. Lett. 2018; 20: 2757
    • 5q Stopka T, Marzo L, Zurro M, Janich S, Würthwein EU, Daniliuc CG, Alemán J, Mancheño OG. Angew. Chem. Int. Ed. 2015; 54: 5049
    • 5r Ba D, Wen S, Tian Q, Chen Y, Lv W, Cheng G. Nat. Commun. 2020; 11: 4219
    • 6a Saito T, Yasuda M, Baba A. Synlett 2005; 1737
    • 6b Saito T, Nishimoto Y, Yasuda M, Baba A. J. Org. Chem. 2006; 71: 8516
    • 6c Saito T, Nishimoto Y, Yasuda M, Baba A. J. Org. Chem. 2007; 72: 8588
    • 6d Nishimoto Y, Yasuda M, Baba A. Org. Lett. 2007; 9: 4931
    • 6e Nishimoto Y, Saito T, Yasuda M, Baba A. Tetrahedron 2009; 65: 5462
    • 6f Onishi Y, Nishimoto Y, Yasuda M, Baba A. Chem. Lett. 2011; 40: 1223
    • 6g Onishi Y, Nishimoto Y, Yasuda M, Baba A. Org. Lett. 2011; 13: 2762
    • 6h Onishi Y, Nishimoto Y, Yasuda M, Baba A. Org. Lett. 2014; 16: 1176
    • 6i Nishimoto Y, Nishimura T, Yasuda M. Chem. Eur. J. 2015; 21: 8301
    • 6j Nishimoto Y, Okita A, Baba A, Yasuda M. Molecules 2016; 1330
    • 6k Nishimoto Y, Kita Y, Ueda H, Imaoka H, Chiba K, Yasuda M, Baba A. Chem. Eur. J. 2016; 22: 11837
    • 6l Kita Y, Yata T, Nishimoto Y, Yasuda M. J. Org. Chem. 2018; 83: 740
    • 6m Nakao S, Saikai M, Nishimoto Y, Yasuda M. Eur. J. Org. Chem. 2021; 77

      Reviews for indium-catalyzed organic reactions:
    • 7a Yadav JS, Antony A, George J, Reddy BV. S. Eur. J. Org. Chem. 2010; 591
    • 7b Yang Y.-S, Wang S.-W, Long Y. Curr. Org. Chem. 2016; 20: 2865
    • 7c Sestelo JP, Sarandeses LA, Martínez MM, Alonso-Marañón L. Org. Biomol. Chem. 2018; 16: 5733
  • 8 Wang F, Yi J, Nishimoto Y, Yasuda M. Synthesis 2021; 53: 4004
  • 9 Wang F, Nishimoto Y, Yasuda M. Angew. Chem. Int. Ed. 2022; 61: e202204462
  • 10 Wang F, Nishimoto Y, Yasuda M. J. Am. Chem. Soc. 2021; 143: 20616
  • 11 Wang F, Nishimoto Y, Yasuda M. Org. Lett. 2022; 24: 1706
  • 12 Doyle MP, Trudell ML, Terpstra JW. J. Org. Chem. 1983; 48: 5146
  • 13 Ring expansion of cyclic acetals with diazo esters catalyzed by Me3SiOTf: Courant T, Pasco M, Lecourt T. Org. Lett. 2018; 20: 2757
  • 14 Liu C, Sang S, Chen F, Yan Y, Zhang C, Huang W. J. Phys. Org. Chem. 2019; 32: e3902
    • 15a Wang SH, Tu YQ, Tang M. Comprehensive Organic Synthesis, 2nd ed., Vol. 3. Knochel P. Elsevier; Amsterdam: 2014: 795
    • 15b Gouygou M, Urrutigoïty M. Comprehensive Organic Synthesis, 2nd ed., Vol. 3. Knochel P. Elsevier; Amsterdam: 2014: 757
  • 16 Modak A, Alegre-Requena JV, de Lescure L, Rynders KJ, Paton RS, Race NJ. J. Am. Chem. Soc. 2022; 144: 86
    • 17a Masuda S, Nakajima T, Suga S. Bull. Chem. Soc. Jpn. 1983; 56: 1089
    • 17b Li X, Li C, Zhang W, Lu X, Han S, Hong R. Org. Lett. 2010; 12: 1696
    • 17c Tsuji Y, Richard JP. J. Phys. Org. Chem. 2016; 29: 557
    • 17d Curtin DY, Crew MC. J. Am. Chem. Soc. 1954; 76: 3719
    • 17e Cram DJ. J. Am. Chem. Soc. 1964; 86: 3767
    • 17f Brown HC, Kim CJ. J. Am. Chem. Soc. 1968; 90: 2082
    • 18a Stopka T, Marzo L, Zurro M, Janich S, Würthwein E.-U, Daniliuc CG, Alemán J, Mancheño OG. Angew. Chem. Int. Ed. 2015; 54: 5049
    • 18b Zhang C, Jiang H, Zhu S. Chem. Commun. 2017; 53: 2677

      Selected papers for bioactivities of dihydrodibenzo[b,f]oxepine derivatives and -dihydrodibenzo[b,f]thiepine derivatives:
    • 19a Boegesoe KP, Liljefors T, Arnt J, Hyttel J, Pedersen H. J. Med. Chem. 1991; 34: 2023
    • 19b Zhong M, Peng E, Huang N, Huang Q, Huq A, Lau M, Colonno R, Li L. Bioorg. Med. Chem. Lett. 2014; 24: 5738
    • 19c Liu H, Liang H, Meng H, Deng X, Zhang X, Lai L. MedChemComm 2018; 9: 239
    • 19d Platella C, Capasso D, Roccardi C, Musumeci D, DellaGreca M, Montesarchio D. Org. Biomol. Chem. 2021; 19: 9953
    • 19e Zhao S, Zhang H, Jin H, Cai X, Zhang R, Jin Z, Yang W, Yu P, Zhang L, Liu Z. Eur. J. Med. Chem. 2021; 225: 113750
    • 19f Cao S, Yang X, Zhang Z, Wu J, Chi B, Chen H, Yu J, Feng S, Xu Y, Li J, Zhang Y, Wang X, Wang Y. Eur. J. Med. Chem. 2022; 230: 114089

      For selected reviews on C–F transformation, see:
    • 20a Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
    • 20b Shen Q, Huang YG, Liu C, Xiao JC, Chen QY, Guo Y. J. Fluorine Chem. 2015; 179: 14
    • 20c Hamel JD, Paquin JF. Chem. Commun. 2018; 54: 10224
    • 20d Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
    • 20e Yan G, Qiu K, Guo M. Org. Chem. Front. 2021; 8: 3915

      For the insertion reaction of a carbon unit into a C–F bond, see:
    • 21a Sheppard WA, Webster OW. J. Am. Chem. Soc. 1973; 95: 2695
    • 21b Glinka J, Fiscus D, Rao CB, Shechter H. Tetrahedron Lett. 1987; 28: 3221
    • 21c Fujimoto H, Kodama T, Yamanaka M, Tobisu M. J. Am. Chem. Soc. 2020; 142: 17323
    • 21d Yu X, Meng QY, Daniliuc CG, Studer A. J. Am. Chem. Soc. 2022; 144: 7072
    • 21e Yoshida T, Ohta M, Emmei T, Kodama T, Tobisu M. Angew. Chem. Int. Ed. 2023; 62: e202303657
    • 22a Olah GA, Kuhn S. J. Org. Chem. 1964; 29: 2317
    • 22b Olah GA, Yamato T, Hashimoto T, Shih JG, Trivedi N, Singh BP, Piteau M, Olah JA. J. Am. Chem. Soc. 1987; 109: 3708
    • 22c Hirano K, Fujita K, Yorimitsu H, Shinokubo H, Oshima K. Tetrahedron Lett. 2004; 45: 2555
    • 22d Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2004; 6: 4873
    • 23a Caputo CB, Stephan DW. Organometallics 2012; 31: 27
    • 23b Dryzhakov M, Moran J. ACS Catal. 2016; 6: 3670
    • 24a Henne AL, Newman MS. J. Am. Chem. Soc. 1938; 60: 1697
    • 24b Burton DJ, Briney GG. J. Org. Chem. 1970; 35: 3036
    • 24c Villani FJ, Mann TA, Wefer EA, Hannon J, Larca LL, Landon MJ, Spivak W, Vashi D, Tozzi S, Danko G, del Prado M, Lutz MJ. J. Med. Chem. 1975; 18: 1
    • 24d Riera J, Castañer J, Carilla J, Robert A. Tetrahedron Lett. 1989; 30: 3825
    • 24e Castañer J, Riera J, Carilla J, Robert A, Molins E, Miravitlles C. J. Org. Chem. 1991; 56: 103
    • 24f Carilla J, Fajari L, Garcia R, Julia L, Marcos C, Riera J, Whitaker CR, Rius J, Aleman C. J. Org. Chem. 1995; 60: 2721
    • 24g Ramchandani RK, Wakharkar RD, Sudalai A. Tetrahedron Lett. 1996; 37: 4063
  • 25 Ooi T, Uraguchi D, Kagoshima N, Maruoka K. Tetrahedron Lett. 1997; 38: 5679

    • For selected papers on fluoride abstraction by aluminum Lewis acids, see:
    • 26a Fuchibe K, Hatta H, Oh K, Oki R, Ichikawa J. Angew. Chem. Int. Ed. 2017; 56: 5890
    • 26b Meißner G, Kretschmar K, Braun T, Kemnitz E. Angew. Chem. Int. Ed. 2017; 56: 16338
    • 26c Fuchibe K, Oki R, Hatta H, Ichikawa J. Chem. Eur. J. 2018; 24: 17932
    • 26d Fuchibe K, Fushihara T, Ichikawa J. Org. Lett. 2020; 22: 2201

      For selected recent papers, see:
    • 27a Wu J, Li X, Qi X, Duan X, Cracraft WL, Guzei IA, Liu P, Tang W. J. Am. Chem. Soc. 2019; 141: 19902
    • 27b Devi L, Shukla R, Rastogi N. Org. Biomol. Chem. 2019; 17: 135
    • 27c Song L, Ni D, Jia S, Pi R, Dong S, Yang F, Tang J, Liu S. Org. Lett. 2020; 22: 1846

      For selected recent papers, see:
    • 28a Davies PW, Albrecht SJ. C, Assanelli G. Org. Biomol. Chem. 2009; 7: 1276
    • 28b Liu Z, Sivaguru P, Zanoni G, Anderson EA, Bi X. Angew. Chem. Int. Ed. 2018; 57: 8927
    • 28c Luo K, Mao S, He K, Yu X, Pan J, Lin J, Shao Z, Jin Y. ACS Catal. 2020; 10: 3733

      Selected recent papers:
    • 29a Tayama E, Yanaki T, Iwamoto H, Hasegawa E. Eur. J. Org. Chem. 2010; 6719
    • 29b Hong X, Lu L, Shen Q. Synlett 2019; 30: 1602
    • 29c Li M, Sun Y, Xie Y, Yu Y, Huang F, Huang H. Chem. Commun. 2020; 56: 11050
  • 30 Yan XW, Zhang Q, Wei W, Ji JX. Tetrahedron Lett. 2014; 55: 3750
  • 31 Erdmann P, Leitner J, Schwarz J, Greb L. ChemPhysChem 2020; 21: 987
  • 32 Lingam VS. P. R, Thomas A, Dahale DH, Rathi VE, Khairatkar-Joshi N, Mukhopadhyay I. Guanidine Derivatives as TRPC Modulators, International Patent WO 2014016766 A1, January 30, 2014