Synlett 2019; 30(17): 1929-1934
DOI: 10.1055/s-0037-1611874
synpacts
© Georg Thieme Verlag Stuttgart · New York

Sustainable Carbene Transfer Reactions with Iron and Light

,
RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany   Email: rene.koenigs@rwth-aachen.de
› Author Affiliations
R.M.K. gratefully acknowledges the Dean’s Seed Fund of RWTH Aachen University. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project no. 408033718.
Further Information

Publication History

Received: 20 May 2019

Accepted after revision: 04 June 2019

Publication Date:
26 June 2019 (online)


Abstract

Carbenes are versatile, highly reactive intermediates with great importance in chemistry. We recently reported on our findings on safe and scalable applications of hazardous diazoacetonitrile using cheap and commercially available iron catalysts in efficient carbene transfer reactions, ranging from cyclopropanation towards C–H functionalization reactions for the synthesis of biologically important building blocks. More lately, we uncovered the reactivity of diazoalkanes under photochemical conditions using visible light and were able to demonstrate a variety of different, metal-free carbene transfer reactions, which now open up new sustainable ways for the construction of small functional molecules.

1 Introduction

2 Iron-Catalyzed Carbene Transfer Reactions of Diazoacetonitrile

3 Metal-free Carbene Transfer Reaction with Visible Light

4 Summary

 
  • References and notes


    • Selected references:
    • 1a Davies HM. L, Manning JR. Nature 2018; 451: 417
    • 1b Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 1c Doyle MP, Duffy R, Ratnikov M, Zhou Z. Chem. Rev. 2010; 110: 704
    • 1d Mertens L, Koenigs RM. Org. Biomol. Chem. 2016; 14: 10547
    • 1e Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 1f Sheng Z, Zhang Z, Chu C, Zhang Y, Wang J. Tetrahedron 2017; 73: 4011
    • 1g Hock KJ, Koenigs RM. Angew. Chem. Int. Ed. 2017; 56: 13566
    • 1h Mykhailiuk PK, Koenigs RM. Chem. Eur. J. 2019; 25: 6053

      Selected articles on nonprecious metal-catalyzed carbene transfer reactions:
    • 2a Knölker H.-J, Bauer I. Chem. Rev. 2015; 115: 3170
    • 2b Zhu S.-F, Zhou Q.-L. Natl. Sci. Rev. 2014; 1: 580
    • 2c Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086

      Selected articles on enzymatic carbene transfer reactions:
    • 3a Brandenberg OF, Fasan R, Arnold FH. Curr. Opin. Biotechnol. 2017; 47: 102
    • 3b Gober JG, Brustad EM. Curr. Opin. Chem. Biol. 2016; 35: 124
    • 3c Hyster TK, Ward TR. Angew. Chem. Int. Ed. 2016; 55: 7344

      Selected references on photochemical carbene transfer reactions:
    • 4a Ciszewski LW, Rybicka-Jasinska K, Gryko D. Org. Biomol. Chem. 2019; 17: 432
    • 4b Candeias NR, Afonso CA. M. Curr. Org. Chem. 2009; 13: 763
    • 4c von Doering WE, Mole T. Tetrahedron 1960; 10: 65
    • 4d DeMore WB, Pritchard HO. Davidson N. J. Am. Chem. Soc. 1959; 81: 5874
    • 5a Seitz WJ, Saha AK, Caspar D, Hossain MM. Tetrahedron Lett. 1992; 33: 7755
    • 5b Seitz WJ, Saha AK, Hossain MM. Organometallics 1993; 12: 2604

      For selected review articles:
    • 6a Che C.-M, Lo VK.-Y, Zhou C.-Y, Huang J.-S. Chem. Soc. Rev. 2011; 40: 1950
    • 6b Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
    • 6c Plietker B. Iron Catalysis in Organic Chemistry: Reactions and applications, 2nd ed. Wiley-VCH; Weinheim: 2008

      Selected references:
    • 7a Le Maux P, Juillard S, Simmoneaux G. Synthesis 2006; 1701
    • 7b Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 938
    • 7c Lu H, Dzik WI, Xu X, Wojtas L, de Bruin B, Zhang XP. J. Am. Chem. Soc. 2011; 133: 8518
    • 7d Aviv I, Gross Z. Chem. Eur. J. 2008; 14: 3995
    • 7e Holzwarth MS, Alt I, Plietker B. Angew. Chem. Int. Ed. 2012; 51: 5351
    • 7f Lai T.-S, Chan F.-Y, So P.-K, Ma D.-L, Wong K.-Y, Che C.-M. Dalton Trans. 2006; 4845
    • 7g Wolf JR, Hamaker CG, Djukic J.-P, Kodadek T, Woo LK. J. Am. Chem. Soc. 1995; 117: 9194
    • 7h Carminati DM, Intrieri D, Caselli A, Le Gac S, Boitrel B, Toma L, Legnani L, Gallo E. Chem. Eur. J. 2016; 22: 13599
    • 7i Griffin JR, Wendell CI, Garwin JA, White MC. J. Am. Chem. Soc. 2017; 139: 13624

      Selected references:
    • 8a Galkina OS, Rodina LL. Russ. Chem. Rev. 2016; 85: 537
    • 8b Brunner J, Senn H, Richards FM. J. Biol. Chem. 1980; 255: 3313
    • 8c Liang Y, Jiao L, Zhang S, Xu J. J. Org. Chem. 2005; 70: 334
    • 8d Wang J, Burdzinski G, Kubicki J, Platz MS. J. Am. Chem. Soc. 2008; 130: 11195
    • 8e Nakatani K, Maekawa S, Tanabe K, Saito I. J. Am. Chem. Soc. 1995; 117: 10635
    • 9a Vaske YS, Mahoney ME, Konopelski JP, Rogow DL, McDonald WJ. J. Am. Chem. Soc. 2010; 132: 11379
    • 9b Wang Z, Herraiz AG, del Hoyo AM, Suero MG. Nature 2018; 554: 86
  • 11 Hommelsheim RM, Guo Y, Yang Z, Empel C, Koenigs RM. Angew. Chem. Int. Ed. 2019; 58: 1203
    • 12a Liu D, Ding W, Zhou Q.-Q, Wei Y, Lu L.-Q, Xiao W.-J. Org. Lett. 2018; 20: 7278
    • 12b Yang J, Wang J, Huang H, Qin G, Jiang Y, Xiao T. Org. Lett. 2019; 21: 2654
  • 13 Curtius T. Ber. Dtsch. Chem. Ges. 1898; 31: 2489
    • 14a Phillips DD, Champion WC. J. Am. Chem. Soc. 1956; 78: 5452
    • 14b Dewar MJ. S, Pettit R. J. Chem. Soc. 1956; 2026

      Selected references:
    • 15a Yang Z, Son K.-I, Li S, Zhou B, Xu J. Eur. J. Org. Chem. 2014; 6380
    • 15b Galliford CV, Scheidt KA. J. Org. Chem. 2007; 72: 1811
    • 15c Ferrand Y, Le Maux P, Simmoneaux G. Tetrahedron: Asymmetry 2005; 16: 3829
    • 15d Chen Z, Zhang Y, Nie J, Ma J.-A. Org. Lett. 2018; 20: 2120
  • 16 Mykhailiuk PK. Eur. J. Org. Chem. 2015; 7235

    • Selected references:
    • 17a Narula AP. S, Arruda EM, Janczuk AJ, Schiet FT. U.S. Pat. Appl. Publ. US 20060287204, 2006 2006; 146, 62367
    • 17b Flick AC, Ding HX, Leveretti CA, Kyne RE, Liu KK-C, Fink SJ, O’Donnell CJ. Bioorg. Med. Chem. 2016; 24: 1937
    • 17c Shuto S, Ono S, Hase Y, Kamiyama N, Matsuda A. Tetrahedron Lett. 1996; 37: 641
  • 18 Kouznetsov VV, Galvis GE. P. Tetrahedron 2018; 74: 773

    • Selected references:
    • 19a Cooke AJ, Pitts D, Johnson A, Beshore DC, Hurzy D, Mitchell H, Fraley M, McComas C, Schirripa K, Mercer SP, Nanda K, Meng D, Wu J, Babaoglu K, Li C.-S, Mao Q, Qi Z. PCT Int. Appl WO 2016054807, 2016 ; Chem. Abstr. 2016, 164, 519630.
    • 19b Winter-Vann AM, Baron RA, Wong W, de la Cruz J, York JD, Gooden DM, Bergo MO, Young SG, Toone EJ, Casey PJ. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 4336
    • 19c Go M.-L, Leow JL, Gorla SK, Schüller AP, Wang M, Casey PJ. J. Med. Chem. 2010; 53: 6838
    • 19d Fukunaga K, Han F, Shioda N, Moriguchi S, Kasahara J, Shirasaki Y. Cardiovasc. Drug Rev. 2006; 24: 88
  • 20 TPP = meso-tetraphenylporphyrin.
  • 21 Hock KJ, Spitzner R, Koenigs RM. Green Chem. 2017; 19: 2118
    • 22a Hommelsheim R, Hock KJ, Schumacher C, Hussein MA, Nguyen TV, Koenigs RM. Chem. Commun. 2018; 54: 11439
    • 22b Hock KJ, Hommelsheim R, Mertens L, Ho J, Nguyen TV, Koenigs RM. J. Org. Chem. 2017; 82: 8220
  • 23 Hock KJ, Mertens L, Hommelsheim R. Spitzner R., Koenigs R. M. 2017; 53: 6577
  • 24 Empel C, Hock KJ, Koenigs RM. Chem. Commun. 2019; 55: 338

    • Selected references on our work in the area of continuous-flow chemistry:
    • 25a Hock KJ, Koenigs RM. Chem. Eur. J. 2018; 24: 10571
    • 25b Mertens L, Hock KJ, Koenigs RM. Chem. Eur. J. 2016; 22: 9542
    • 25c Hock KJ, Mertens L, Koenigs RM. Chem. Commun. 2016; 52: 13783
    • 25d Hock KJ, Mertens L, Metze FK, Schmittmann C, Koenigs RM. Green Chem. 2017; 19: 905
  • 26 Pedersen J, Lauritzen C. PCT Int. Appl WO 2012130299, 2012 ; Chem. Abstr. 2012, 157, 548936.
  • 27 Empel C, Hock KJ, Koenigs RM. Org. Biomol. Chem. 2019; 16: 7129
  • 28 References: Tsotinis A, Vlachou M, Papahatjis DP, Calogeropoulou T, Nikas SP, Garratt PJ, Piccio V, Vonhoff S, Davidson K, Teh M.-T, Sugden D. J. Med. Chem. 2006; 49: 3509
  • 29 Hock KJ, Knorrscheidt A, Hommelsheim R, Ho J, Weissenborn MJ, Koenigs RM. Angew. Chem. Int. Ed. 2019; 58: 3630
    • 30a Liu X, Yuan Z, Wang J, Cui Y, Liu S, Ma Y, Gu L, Xu S. Biochem. Biophys. Res. Commun. 2017; 484: 40
    • 30b Weissenborn MJ, Low SA, Borlinghaus N, Kuhn M, Kummer S, Rami F, Plietker B, Hauer B. ChemCatChem 2016; 8: 1636
    • 31a Vargas DA, Tinoco A, Tyagi V, Fasan R. Angew. Chem. Int. Ed. 2018; 57: 9911
    • 31b Brandenberg OF, Chen K, Arnold F. J. Am. Chem. Soc. 2019; 141: 8989

      Selected reviews on photochemical reactions:
    • 32a Poplata S, Tröster A, Zou Y.-Q, Bach T. Chem. Rev. 2016; 116: 9748
    • 32b Remy R, Bochet CG. Chem. Rev. 2016; 116: 9816
    • 32c Kärkäs MD, Porco Jr JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 32d Nicholls TP, Leonori D, Bissember AC. Nat. Prod. Rep. 2016; 33: 1248
    • 32e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 32f Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
  • 33 He F, Koenigs RM. Chem. Commun. 2019; 55: 4881
    • 34a Wang J, Yao X, Wang T, Han J, Zhang J, Zhang X, Wang P, Zhang Z. Org. Lett. 2015; 17: 5124
    • 34b Wang J, Yao X, Wang T, Han J, Zhang J, Zhang X, Wang P, Zhang Z. Chem. Commun. 2015; 51: 15204
    • 34c Li Z, Boyarskikh V, Hansen JH, Autschbach J, Musaev DG, Davies HM. L. J. Am. Chem. Soc. 2012; 134: 15497
  • 35 Jana S, Koenigs RM. Asian J. Org. Chem. 2019; 8: 683
  • 36 Yang Z, Guo Y, Koenigs RM. Chem. Eur. J. 2019; 25: 6703
  • 37 Jana S, Koenigs RM. Org. Lett. 2019; 21: 3653
  • 38 Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noel T. Chem. Rev. 2016; 116: 10276