Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin
DOI: 10.1055/a-2116-8022
Original Article

Efficacy and Safety of Trigeminal Nerve Stimulation for Migraine: A Meta-Analysis of Randomized Controlled Studies

Wirksamkeit und Sicherheit der trigeminalen Nervenstimulation bei Migräne: eine Metaanalyse randomisierter kontrollierter Studien
Chunyan Deng
1   Department of Rehabilitation medicine, chongqing general hospital, Chongqing, China
,
Yongmei Li
2   Department of Cardiology, chongqing general hospital, Chongqing, China
› Author Affiliations

Abstract

Objective Trigeminal nerve stimulation may have some potential in treating migraine, and this meta-analysis aims to study the efficacy and safety of trigeminal nerve stimulation for migraine patients.

Methods We have searched several databases including PubMed, EMbase, Web of science, EBSCO and Cochrane library databases, and selected the randomized controlled trials (RCTs) comparing the efficacy of trigeminal nerve stimulation for migraine patients. This meta-analysis was conducted using the random-effect or fixed-effect model based on the heterogeneity.

Results Four RCTs were included in this meta-analysis. Compared with sham procedure in migraine patients, trigeminal neurostimulation benefited to improve pain freedom at 2 h (OR=2.69; 95% CI=1.30 to 5.56; P=0.007), pain relief at 2 h (OR=2.05; 95% CI=1.53 to 2.74; P<0.00001), pain freedom at 24 h (OR=2.00; 95% CI=1.42 to 2.81; P<0.0001) as well as pain relief at 24 h (OR=1.71; 95% CI=1.25 to 2.33; P=0.0007), and reduce rescue medication (OR=0.70; 95% CI=0.52 to 0.95; P=0.02), but demonstrated no obvious impact on the incidence of adverse events (OR=2.24; 95% CI=1.21 to 4.13; P=0.01).

Conclusions Trigeminal nerve stimulation is effective and safe for the treatment of migraine patients.

Zusammenfassung

Ziel Die Trigeminus-Nervenstimulation kann ein gewisses Potenzial bei der Behandlung von Migräne haben, und diese Meta-Analyse zielt darauf ab, die Wirksamkeit und Sicherheit der Trigeminus-Nervenstimulation bei Migränepatienten zu untersuchen.

Methoden Wir haben mehrere Datenbanken durchsucht, darunter PubMed, EMbase, Web of Science, EBSCO und Cochrane Bibliotheksdatenbanken und die randomisierten kontrollierten Studien (RCTs) ausgewählt, die die Wirksamkeit der trigeminalen Nervenstimulation bei Migränepatienten vergleichen. Diese Metaanalyse wurde anhand des Zufalls- oder Fixed-Effect-Modells basierend auf der Heterogenität durchgeführt.

Ergebnisse Vier RCTs wurden in diese Metaanalyse einbezogen. Im Vergleich zum Scheinverfahren bei Migränepatienten verbesserte die trigeminale Neurostimulation die Schmerzfreiheit bei 2 h (OR=2.69; 95% CI=1.30 bis 5.56; P=0.007), Schmerzlinderung bei 2 h (OR=2.05; 95% CI=1.53 bis 2.74; P<0.00001), Schmerzfreiheit bei 24 h (OR=2.00; 95% CI=1.42 bis 2.81; P<0.0001) sowie Schmerzlinderung bei 24 h (OR=1.71; CI=1.25% bis 5.56; P=0.007), und Rettungsmedikamente reduzieren (OR=0,70; 95% CI=0,52 bis 0,95; P=0,02), zeigten jedoch keinen offensichtlichen Einfluss auf die Inzidenz unerwünschter Ereignisse (OR=2,24; 95% CI=1,21 bis 4,13; P=0,01).

Schlussfolgerungen Trigeminale Nervenstimulation ist wirksam und sicher für die Behandlung von Migränepatienten.



Publication History

Received: 09 February 2023

Accepted: 21 June 2023

Article published online:
25 July 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Vos T, Allen C, Arora M. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 2016; 388: 1545-1602
  • 2 Charles A. The pathophysiology of migraine: implications for clinical management, The Lancet. Neurology 17 2018; 174-182
  • 3 Burch R. Migraine and Tension-Type Headache: Diagnosis and Treatment. The Medical clinics of North America 103 2019; 215-233
  • 4 Ashina M, Terwindt GM, Al-Karagholi MA. et al. Migraine: disease characterisation, biomarkers, and precision medicine. Lancet (London, England) 397 2021; 1496-1504
  • 5 Olla D, Sawyer J, Sommer N. et al. Migraine Treatment. Clinics in plastic surgery 47 2020; 295-303
  • 6 Gökçek E, Kaydu A. The effects of music therapy in patients undergoing septorhinoplasty surgery under general anesthesia. Brazilian journal of otorhinolaryngology 86 2020; 419-426
  • 7 Sacco S, Amin FM, Ashina M. et al. European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention – 2022 update. The journal of headache and pain 2022; 23: 67
  • 8 Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia: an international journal of headache 2018; 38: 1-211
  • 9 Reuter U, Ehrlich M, Gendolla A. et al. Erenumab versus topiramate for the prevention of migraine – a randomised, double-blind, active-controlled phase 4 trial. Cephalalgia: an international journal of headache 2022; 42: 108-118
  • 10 Overeem LH, Peikert A, Hofacker MD. et al. Effect of antibody switch in non-responders to a CGRP receptor antibody treatment in migraine: A multi-center retrospective cohort study. Cephalalgia: an international journal of headache 2022; 42: 291-301
  • 11 Lipton RB, Munjal S, Alam A. et al. Migraine in America Symptoms and Treatment (MAST) Study: Baseline Study Methods, Treatment Patterns, and Gender Differences. Headache 2018; 58: 1408-1426
  • 12 Lipton RB, Bigal ME, Diamond M. et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology 2007; 68: 343-349
  • 13 Goadsby PJ, Wietecha LA, Dennehy EB. et al. Phase 3 randomized, placebo-controlled, double-blind study of lasmiditan for acute treatment of migraine. Brain: a journal of neurology 2019; 142: 1894-1904
  • 14 Croop R, Goadsby PJ, Stock DA. et al. Efficacy, safety, and tolerability of rimegepant orally disintegrating tablet for the acute treatment of migraine: a randomised, phase 3, double-blind, placebo-controlled trial. Lancet (London, England) 2019; 394: 737-745
  • 15 Voss T, Lipton RB, Dodick DW. et al. A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia: an international journal of headache 2016; 36: 887-898
  • 16 Mayans L, Walling A. Acute Migraine Headache: Treatment Strategies. American family physician 2018; 97: 243-251
  • 17 Dodick DW, Martin VT, Smith T. et al. Cardiovascular tolerability and safety of triptans: a review of clinical data. Headache 2004; 44: S20-S30
  • 18 Tepper SJ, Millson D. Safety profile of the triptans. Expert opinion on drug safety 2003; 2: 123-132
  • 19 Peters GL. Migraine overview and summary of current and emerging treatment options. The American journal of managed care 2019; 25: S23-s34
  • 20 Wells RE, Bertisch SM, Buettner C. et al. Complementary and alternative medicine use among adults with migraines/severe headaches. Headache 2011; 51: 1087-1097
  • 21 Kuruvilla DE, Mehta A, Ravishankar N. et al. A patient perspective of complementary and integrative medicine (CIM) for migraine treatment: a social media survey. BMC complementary medicine and therapies 2021; 21: 58
  • 22 Vecchio E, Gentile E, Franco G. et al. Effects of external trigeminal nerve stimulation (eTNS) on laser evoked cortical potentials (LEP): A pilot study in migraine patients and controls. Cephalalgia. 2018; 38: 1245-1256
  • 23 Kuruvilla DE, Mann JI, Tepper SJ. et al. Phase 3 randomized, double-blind, sham-controlled Trial of e-TNS for the Acute treatment of Migraine (TEAM). Scientific reports 2022; 12: 5110
  • 24 Tepper SJ, Grosberg B, Daniel O. et al. Migraine treatment with external concurrent occipital and trigeminal neurostimulation-A randomized controlled trial. Headache 2022; 62: 989-1001
  • 25 Daniel O, Tepper SJ, Deutsch L. et al. External Concurrent Occipital and Trigeminal Neurostimulation Relieves Migraine Headache: A Prospective, Randomized, Double-Blind, Sham-Controlled Trial. Pain and therapy 2022; 11: 907-922
  • 26 Moher D, Liberati A, Tetzlaff J. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Bmj 2009; 339: b2535
  • 27 HigginsJPT G. Cochrane handbook for systematic reviews of interventions version 5.1. 0 [updated March 2011]. The cochrane collaboration. 2011
  • 28 Jadad AR, Moore RA, Carroll D. et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary?. Controlled Clinical Trials 1996; 17: 1-12
  • 29 Kjaergard LL, Villumsen J, Gluud C. Reported Methodologic Quality and Discrepancies between Large and Small Randomized Trials in Meta-Analyses. Annals of Internal Medicine 2001; 135: 982-989
  • 30 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in medicine 2002; 21: 1539-1558
  • 31 Chou DE, Shnayderman Yugrakh M, Winegarner D. et al. Acute migraine therapy with external trigeminal neurostimulation (ACME): A randomized controlled trial. Cephalalgia: an international journal of headache 2019; 39: 3-14
  • 32 Riederer F, Penning S, Schoenen J. Transcutaneous Supraorbital Nerve Stimulation (t-SNS) with the Cefaly(®) Device for Migraine Prevention: A Review of the Available Data. Pain and therapy 2015; 4: 135-147