Synthesis 2024; 56(01): 1-15
DOI: 10.1055/a-2108-9549
review

Ni- and Pd-Catalyzed Enantioselective 1,2-Dicarbofunctionalization of Alkenes

Taeho Kang
,
Omar Apolinar
,
This work was financially supported by the National Science Foundation (CHE-2102550) and Bristol Myers Squibb. We acknowledge the NSF for Graduate Research Fellowship (DGE-1842471, O.A.) and the Kwanjeong Educational Foundation for a Graduate Fellowship (T.K.).


Abstract

Catalytic enantioselective 1,2-dicarbofunctionalization (1,2-DCF) of alkenes is a powerful transformation of growing importance in organic synthesis for constructing chiral building blocks, bioactive molecules, and agrochemicals. Both in a two- and three-component context, this family of reactions generates densely functionalized, structurally complex products in a single step. Across several distinct mechanistic pathways at play in these transformations with nickel or palladium catalysts, stereocontrol can be obtained through tailored chiral ligands. In this Review we discuss the various strategies, mechanisms, and catalysts that have been applied to achieve enantioinduction in alkene 1,2-DCF.

1 Introduction

2 Two-Component Enantioselective 1,2-DCF via Migratory Insertion

3 Two-Component Enantioselective 1,2-DCF via Radical Capture

4 Three-Component Enantioselective 1,2-DCF via Radical Capture

5 Three-Component Enantioselective 1,2-DCF via Migratory Insertion

6 Miscellaneous Mechanisms

7 Conclusion



Publication History

Received: 09 May 2023

Accepted after revision: 12 June 2023

Accepted Manuscript online:
12 June 2023

Article published online:
25 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 1b Lovering F. Med. Chem. Commun. 2013; 4: 515
    • 1c Li J, Eastgate MD. Org. Biomol. Chem. 2015; 13: 7164
    • 1d Eastgate MD, Schmidt MA, Fandrick KR. Nat. Rev. Chem. 2017; 1: 0016
    • 1e Caille S, Cui S, Faul MM, Mennen SM, Tedrow JS, Walker SD. J. Org. Chem. 2019; 84: 4583
    • 1f Beaver MG, Caille S, Farrell RP, Rötheli AR, Smith AG, Tedrow JS, Thiel OR. Synlett 2021; 32: 457

      For representative reviews on transition-metal-catalyzed C(sp2/3)–C(sp3) cross-couplings see:
    • 2a Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829
    • 2b Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 2c Kranthikumar R. Organometallics 2022; 41: 667
    • 2d Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587

      For reviews on nonstereoselective Pd- and Ni-catalyzed 1,2-dicarbofunctionalization of alkenes:
    • 3a Derosa J, Tran VT, van der Puyl VA, Engle KM. Aldrichimica Acta 2018; 51: 21
    • 3b Giri R, KC SC. J. Org. Chem. 2018; 83: 3013
    • 3c Tu H.-Y, Zhu S, Qing F.-L, Chu L. Synthesis 2020; 52: 1346
    • 3d Badir SO, Molander GA. Chem 2020; 6: 1327
    • 3e Derosa J, Apolinar O, Kang T, Tran VT, Engle KM. Chem. Sci. 2020; 11: 4287
    • 3f Qi X, Diao T. ACS Catal. 2020; 10: 8542
    • 3g Lee BC, Liu C.-F, Lin LQ. H, Yap KZ, Song N, Ko CH. M, Chan PH, Koh MJ. Chem. Soc. Rev. 2023; 52: 2946
    • 4a Leatherman MD, Svejda SA, Johnson LK, Brookhart M. J. Am. Chem. Soc. 2003; 125: 3068
    • 4b Xu H, White PB, Hu C, Diao T. Angew. Chem. Int. Ed. 2017; 56: 1535
    • 4c Xu H, Hu CT, Wang X, Diao T. Organometallics 2017; 36: 4099

      For a recent review on enantioselective radical-based Cu-catalyzed 1,2-DCF of alkenes see:
    • 5a Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32

    • For closed-shell enantioselective Cu-catalyzed 1,2-DCF of alkenes see:
    • 5b You W, Brown MK. J. Am. Chem. Soc. 2015; 137: 14578

    • For enantioselective Rh-catalyzed 1,2-DCF of alkenes see:
    • 5c Shintani R, Okamoto K, Otomaru Y, Ueyama K, Hayashi T. J. Am. Chem. Soc. 2005; 127: 54
    • 5d Miura T, Sasaki T, Nakazawa H, Murakami M. J. Am. Chem. Soc. 2005; 127: 1390
    • 5e Xu T, Ko HM, Savage NA, Dong G. J. Am. Chem. Soc. 2012; 134: 20005

    • For enantioselective Co-catalyzed 1,2-DCF of alkenes see:
    • 5f Herraiz AG, Cramer N. ACS Catal. 2021; 11: 11938
    • 6a Catellani M, Chiusoli GP. Tetrahedron Lett. 1982; 23: 4517
    • 6b Catellani M, Chiusoli GP, Giroldini W, Salerno G. J. Organomet. Chem. 1980; 199: C21
    • 6c Catellani M, Chiusoli GP. J. Organomet. Chem. 1982; 233: C21
    • 6d Catellani M, Chiusoli GP, Sgarabotto P. J. Organomet. Chem. 1982; 240: 311
    • 7a Sato Y, Sodeoka M, Shibasaki M. J. Org. Chem. 1989; 54: 4738
    • 7b Carpenter NE, Kucera DJ, Overman LE. J. Org. Chem. 1989; 54: 5846
    • 7c Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
  • 8 Ohshima T, Kagechika K, Adachi M, Sodeoka M, Shibasaki M. J. Am. Chem. Soc. 1996; 118: 7108
    • 9a Diaz P, Gendre F, Stella L, Charpentier B. Tetrahedron 1998; 54: 4579
    • 9b Yue G, Lei K, Hirao H, Zhou J. Angew. Chem. Int. Ed. 2015; 54: 6531
    • 10a Pinto A, Jia Y, Neuville L, Zhu J. Chem. Eur. J. 2007; 13: 961
    • 10b Yasui Y, Kamisaki H, Takemoto Y. Org. Lett. 2008; 10: 3303
    • 10c Watson MP, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 12594
    • 10d Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S. J. Am. Chem. Soc. 2008; 130: 12874
  • 11 Cong H, Fu GC. J. Am. Chem. Soc. 2014; 136: 3788
  • 12 Kong W, Wang Q, Zhu J. J. Am. Chem. Soc. 2015; 137: 16028
  • 13 Kong W, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 9714
  • 14 Carmona RC, Köster OD, Correia CR. D. Angew. Chem. Int. Ed. 2018; 57: 12067
  • 15 Ma T, Chen Y, Li Y, Ping Y, Kong W. ACS Catal. 2019; 9: 9127
    • 16a Zhang Z.-M, Xu B, Wu L, Wu Y, Qian Y, Zhou L, Liu Y, Zhang J. Angew. Chem. Int. Ed. 2019; 58: 14653
    • 16b Ju B, Chen S, Kong W. Chem. Commun. 2019; 55: 14311
    • 16c Chen Q, Li S, Xie X, Guo H, Yang J, Zhang J. Org. Lett. 2021; 23: 4099
    • 16d Ma Z, Sun L, Zhou JS. Sci. China: Chem. 2023; 66: 1701
    • 17a Zhou L, Li S, Xu B, Ji D, Wu L, Liu Y, Zhang Z.-M, Zhang J. Angew. Chem. Int. Ed. 2020; 59: 2769
    • 17b Liu R.-R, Wang Y.-G, Li Y.-L, Huang B.-B, Liang R.-X, Jia Y.-X. Angew. Chem. Int. Ed. 2017; 56: 7475
    • 17c Wu Y, Xu B, Zhao G, Pan Z, Zhang Z.-M, Zhang J. Chin. J. Chem. 2021; 39: 3255
    • 18a Liu L, Cheng F, Meng C, Zhang A.-A, Zhang M, Xu K, Ishida N, Murakami M. ACS Catal. 2021; 11: 8942
    • 18b Cao K, Zhang Z.-M, Zhang J, Chen F. Org. Lett. 2021; 23: 9520
    • 19a Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
    • 19b Xu B, Ji D, Wu L, Zhou L, Liu Y, Zhang Z.-M, Zhang J. Chem 2022; 8: 836
  • 20 Diccianni J, Lin Q, Diao T. Acc. Chem. Res. 2020; 53: 906
  • 21 Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
  • 22 Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722
  • 23 Tian Z.-X, Qiao J.-B, Xu G.-L, Pang X, Qi L, Ma W.-Y, Zhao Z.-Z, Duan J, Du Y.-F, Su P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 7637
  • 24 Li Y, Ding Z, Lei A, Kong W. Org. Chem. Front. 2019; 6: 3305
  • 25 Jin Y, Yang H, Wang C. Org. Lett. 2020; 22: 2724
  • 26 Williams MT, Morrill LC, Browne DC. Adv. Synth. Catal. 2023; 365: 1477
  • 27 Fan P, Lan Y, Zhang C, Wang C. J. Am. Chem. Soc. 2020; 142: 2180
    • 28a Wu X, Qu J, Chen Y. J. Am. Chem. Soc. 2020; 142: 15654
    • 28b Wu X, Luan B, Zhao W, He F, Wu X.-Y, Qu J, Chen Y. Angew. Chem. Int. Ed. 2022; 61: e202111598
  • 29 Li Y, Zhang F.-P, Wang R.-H, Qi S.-L, Luan Y.-X, Ye M. J. Am. Chem. Soc. 2020; 142: 19844
  • 30 Lan Y, Wang C. Commun. Chem. 2020; 3: 45
  • 31 Chierchia M, Xu P, Lovinger GJ, Morken JP. Angew. Chem. Int. Ed. 2019; 58: 14245
  • 32 Gu J.-W, Min Q.-Q, Yu L.-C, Zhang X. Angew. Chem. Int. Ed. 2016; 55: 12270
    • 33a Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
    • 33b Lin Q, Spielvogel EH, Diao T. Chem 2023; 9: 1295
  • 34 Tu H.-Y, Wang F, Huo L, Li Y, Zhu S, Zhao X, Li H, Qing F.-L, Chu L. J. Am. Chem. Soc. 2020; 142: 9604
    • 35a Wei X, Shu W, García-Domínguez A, Merino E, Nevado C. J. Am. Chem. Soc. 2020; 142: 13515
    • 35b García-Domínguez A, Li Z, Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
  • 36 Li Y.-Z, Rao N, An L, Wan X.-L, Zhang Y, Zhang X. Nat. Commun. 2022; 13: 5539
    • 37a Li X, Yuan M, Chen F, Huang Z, Qing F.-L, Gutierrez O, Chu L. Chem 2023; 9: 154
    • 37b Guo L, Yuan M, Zhang Y, Wang F, Zhu S, Gutierrez O, Chu L. J. Am. Chem. Soc. 2020; 142: 20390
    • 38a Kang T, Kim N, Cheng PT, Zhang H, Foo K, Engle KM. J. Am. Chem. Soc. 2021; 143: 13962
    • 38b Kang T, González JM, Li Z.-Q, Foo K, Cheng PT. W, Engle KM. ACS Catal. 2022; 12: 3890
    • 38c Li Z.-Q, Cao Y, Kang T, Engle KM. J. Am. Chem. Soc. 2022; 144: 7189
  • 39 Stokes BJ, Liao L, de Andrade AM, Wang Q, Sigman MS. Org. Lett. 2014; 16: 4666
  • 40 Wu X, Lin H.-C, Li M.-L, Li L.-L, Han Z.-Y, Gong L.-Z. J. Am. Chem. Soc. 2015; 137: 13476
  • 41 Zhang Y, Chen G, Zhao D. Chem. Sci. 2019; 10: 7952
  • 42 Xi Y, Huang W, Wang C, Ding H, Xia T, Wu L, Fang K, Qu J, Chen Y. J. Am. Chem. Soc. 2022; 144: 8389
  • 43 Apolinar O, Kang T, Alturaifi TM, Bedekar PG, Rubel CZ, Derosa J, Sanchez BB, Wong QN, Sturgell EJ, Chen JS, Wisniewski SR, Liu P, Engle KM. J. Am. Chem. Soc. 2022; 144: 19337
  • 44 Liu C.-F, Wang Z.-C, Luo X, Lu J, Ko CH. M, Shi S.-L, Koh MJ. Nat. Catal. 2022; 5: 934
  • 45 Dong Z, Tang Q, Xu C, Chen L, Ji H, Zhou S, Song L, Chen L.-A. Angew. Chem. Int. Ed. 2023; 62: e202218286
  • 46 Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science 2016; 351: 70
  • 47 Teng S, Chi YR, Zhou JS. Angew. Chem. Int. Ed. 2021; 60: 4491