Synthesis 2023; 55(20): 3393-3401
DOI: 10.1055/a-2096-4223
paper

Copper-Catalyzed Coupling of N-Phenoxyacetamides and 2H-Azirines for Synthesis of α-Amino Oxime Ethers

Yue-Lu Zhu
a   School of Chemistry and Chemical Engineering, Heze University, Heze, 274015, Shandong, P. R. China
,
Jie Yan
a   School of Chemistry and Chemical Engineering, Heze University, Heze, 274015, Shandong, P. R. China
,
Xiu-Xuan Xu
a   School of Chemistry and Chemical Engineering, Heze University, Heze, 274015, Shandong, P. R. China
,
Zong-Yu Sun
a   School of Chemistry and Chemical Engineering, Heze University, Heze, 274015, Shandong, P. R. China
,
Jiao Chen
b   College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, Shaanxi, P. R. China
c   The College of Life Sciences, Northwest University, Xi’an, 710069, Shaanxi, P. R. China
› Author Affiliations
We thank the Shandong Provincial Natural Science Foundation (ZR2022QB219) and Heze University for financial support.


Abstract

Copper-catalyzed coupling reaction involving N-phenoxyacetamides and 2H-azirines is described, in which N–O and C–N bonds are broken and restructured. This protocol provides an efficient strategy for the highly regioselective synthesis of racemic α-amino oxime ethers. In addition, this strategy can be used to modify natural products and is gram-scale compatible.

Supporting Information



Publication History

Received: 27 March 2023

Accepted after revision: 19 May 2023

Accepted Manuscript online:
19 May 2023

Article published online:
19 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Tabolin AA, Ioffe SL. Chem. Rev. 2014; 114: 5426
    • 1b Mirjafary Z, Abdoli M, Saeidian H, Boroon S, Kakanejadifard A. RSC Adv. 2015; 5: 79361
    • 1c Waldman AJ, Ng TL, Wang P, Balskus EP. Chem. Rev. 2017; 117: 5784
    • 1d Chen C, Zhao J, Shi X, Liu L, Zhu Y.-P, Sun W, Zhu B. Org. Chem. Front. 2020; 7: 1948
    • 1e Lu FD, Chen J, Jiang X, Chen JR, Lu LQ, Xiao WJ. Chem. Soc. Rev. 2021; 50: 12808
    • 1f Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Chem. Rev. 2022; 122: 17479
    • 2a Westlake DW, Vining LC. Biotechnol. Bioeng. 1969; 11: 1125
    • 2b Lambert MP, Neuhaus FC. J. Antibiot. 1972; 110: 978
    • 2c Singaram S, Lawrence RS, Hornemann U. J. Bacteriol. 1979; 32: 379
    • 3a Saag MS, Dismukes WE. Antimicrob. Agents Chemother. 1988; 32: 1
    • 3b Rossello A, Bertini S, Lapucci A, Macchia M, Martinelli A, Rapposelli S, Herreros E, Macchia B. J. Med. Chem. 2002; 45: 4903
  • 4 Bhalodi AA, Crandon JL, Biek D, Nicolau DP. Antimicrob. Agents Chemother. 2012; 56: 6160
    • 5a Kolmel DK, Kool ET. Chem. Rev. 2017; 117: 10358
    • 5b Nimmagadda SK, Mallojjala SC, Woztas L, Wheeler SE, Antilla JC. Angew. Chem. Int. Ed. 2017; 56: 2454
    • 6a Mirjafary Z, Abdoli M, Saeidian H, Kakanejadifard A, Farnia SM. F. RSC Adv. 2016; 6: 17740
    • 6b Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY. Chem. Rev. 2017; 117: 13039
    • 6c Zeng H, Zhu C, Jiang H. Org. Lett. 2019; 21: 1130
    • 6d Li Q, Cai BG, Li L, Xuan J. Org. Lett. 2021; 23: 6951
    • 6e Sandmeier T, Carreira EM. Angew. Chem. Int. Ed. 2021; 60: 9913
    • 6f Ushakov PY, Ioffe SL, Sukhorukov AY. Org. Chem. Front. 2022; 9: 5358
    • 6g Shybanov DE, Filkina ME, Kukushkin ME, Grishin YK, Roznyatovsky VA, Zyk NV, Beloglazkina EK. New J. Chem. 2022; 46: 18575
    • 7a Ma L, Kou L, Jin F, Cheng X, Tao S, Jiang G, Bao X, Wan X. Chem. Sci. 2020; 12: 774
    • 7b Ma L, Jin F, Cheng X, Tao S, Jiang G, Li X, Yang J, Bao X, Wan X. Chem. Sci. 2021; 12: 9823
    • 7c Liu Y, Liu J, Liu YY, Tang B, Lin H, Li Y, Zhang L. RSC Adv. 2021; 11: 30415
    • 7d Deb T, Tu J, Franzini RM. Chem. Rev. 2021; 121: 6850
    • 7e Zhu Y, Liu T, Liu B, Shi H, Tan Q, Xu B. Org. Chem. Front. 2022; 9: 676
  • 8 Dong JW, Ding T, Zhang SY, Chen ZM, Tu YQ. Angew. Chem. Int. Ed. 2018; 57: 13192
    • 9a Skepper CK, Dalisay DS, Molinski TF. Bioorg. Med. Chem. Lett. 2010; 20: 2029
    • 9b Khlebnikov AF, Novikov MS, Rostovskii NV. Tetrahedron 2019; 75: 2555
    • 10a Huang CY, Doyle AG. Chem. Rev. 2014; 114: 8153
    • 10b Duan X, Zheng N, Liu G, Li M, Wu Q, Sun X, Song W. Org. Lett. 2022; 24: 6006
    • 10c Darbandizadeh SA, Amiri K, Rominger F, Balalaie S. Eur. J. Org. Chem. 2023; e202201109
  • 11 Novikov MS, Smetanin IA, Khlebnikov AF, Rostovskii NV, Yufit DS. Tetrahedron Lett. 2012; 53: 5777
    • 12a Khlebnikov AF, Golovkina MV, Novikov MS, Yufit DS. Org. Lett. 2012; 14: 3768
    • 12b Li T, Xin X, Wang C, Wang D, Wu F, Li X, Wan B. Org. Lett. 2014; 16: 4806
    • 12c Xuan J, Xia XD, Zeng TT, Feng ZJ, Chen JR, Lu LQ, Xiao WJ. Angew. Chem. Int. Ed. 2014; 53: 5653
    • 12d Zhao YZ, Yang HB, Tang XY, Shi M. Chem. Eur. J. 2015; 21: 3562
    • 12e Zhu L, Yu Y, Mao Z, Huang X. Org. Lett. 2015; 17: 30
    • 12f Li T, Yan H, Li X, Wang C, Wan B. J. Org. Chem. 2016; 81: 12031
    • 12g Tomashenko OA, Novikov MS, Khlebnikov AF. J. Org. Chem. 2017; 82: 616
    • 12h Khlebnikov A, Funt L, Tomashenko O, Novikov M. Synthesis 2018; 50: 4809
    • 12i Zhao MN, Ren ZH, Yang DS, Guan ZH. Org. Lett. 2018; 20: 1287
    • 12j Zhao M.-N, Ning G.-W, Yang D.-S, Gao P, Fan M.-J, Zhao L.-F. Tetrahedron Lett. 2020; 61: 152319
    • 12k Bodunov VA, Galenko EE, Sakharov PA, Novikov MS, Khlebnikov AF. J. Org. Chem. 2019; 84: 10388
    • 12l Hu H, Wang C, Lai H, Wang S, Ni H, Yu W, Cao P. Org. Chem. Front. 2020; 7: 3686
    • 12m Funt LD, Krivolapova YV, Khoroshilova OV, Novikov MS, Khlebnikov AF. J. Org. Chem. 2020; 85: 4182
    • 12n Karki BS, Devi L, Pokhriyal A, Kant R, Rastogi N. Chem. Asian J. 2019; 14: 4793
    • 12o Galenko EE, Bodunov VA, Kryukova MA, Novikov MS, Khlebnikov AF. J. Org. Chem. 2021; 86: 4098
    • 12p Pokhriyal A, Singh Karki B, Kant R, Rastogi N. J. Org. Chem. 2021; 86: 4661
    • 12q Wang L, Liu C, Li L, Wang X, Sun R, Zhou MD, Wang H. Chin. J. Chem. 2022; 40: 719
    • 13a Angyal A, Demjen A, Wolfling J, Puskas LG, Kanizsai I. J. Org. Chem. 2020; 85: 3587
    • 13b Wang Z, Li H, Wang Z, Suleman M, Wang Y, Lu P. J. Org. Chem. 2021; 86: 8101
    • 13c Vuillermet F, Bourret J, Pelletier G. J. Org. Chem. 2021; 86: 388
    • 13d Filippov IP, Agafonova AV, Titov GD, Smetanin IA, Rostovskii NV, Khlebnikov AF, Novikov MS. J. Org. Chem. 2022; 87: 6514
    • 14a Zeng TT, Xuan J, Ding W, Wang K, Lu LQ, Xiao WJ. Org. Lett. 2015; 17: 4070
    • 14b Chen L, Li H, Li P, Wang L. Org. Lett. 2016; 18: 3646
    • 14c Duan X, Yang K, Lu J, Kong X, Liu N, Ma J. Org. Lett. 2017; 19: 3370
    • 14d Wu Y, Tian B, Witzel S, Jin H, Tian X, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2019; 25: 4093
    • 14e Zhao MN, Ning GW, Yang DS, Fan MJ, Zhang S, Gao P, Zhao LF. J. Org. Chem. 2021; 86: 2957
    • 14f Teng Y, Fang T, Lin Z, Qin L, Jiang M, Wu W, You Y, Weng Z. Tetrahedron Lett. 2022; 107: 154100
    • 15a Loy NS, Singh A, Xu X, Park CM. Angew. Chem. Int. Ed. 2013; 52: 2212
    • 15b Prechter A, Henrion G, Faudot dit Bel P, Gagosz F. Angew. Chem. Int. Ed. 2014; 53: 4959
    • 15c Jiang Y, Park CM, Loh TP. Org. Lett. 2014; 16: 3432
    • 15d Sujatha C, Bhatt CS, Ravva MK, Suresh AK, Namitharan K. Org. Lett. 2018; 20: 3241
    • 16a Nallagangula M, Namitharan K. Org. Lett. 2017; 19: 3536
    • 16b Sun S, Huang J, Yuan C, Wang G, Guo D, Wang J. Org. Chem. Front. 2022; 9: 3006
    • 17a Cai BG, Chen ZL, Xu GY, Xuan J, Xiao WJ. Org. Lett. 2019; 21: 4234
    • 17b Chen W, Shu K, Shao J, Liu S, Zhu H, Zhang J, Zhang C, Zeng L.-H. Synlett 2020; 32: 316
    • 17c Sakharov PA, Rostovskii NV, Khlebnikov AF, Novikov MS. Org. Lett. 2020; 22: 3023
    • 17d Smetanin IA, Agafonova AV, Rostovskii NV, Khlebnikov AF, Yufit DS, Novikov MS. Org. Chem. Front. 2020; 7: 525
    • 17e Efimenko NI, Tomashenko OA, Spiridonova DV, Novikov MS, Khlebnikov AF. Org. Lett. 2021; 23: 6362
    • 17f Xie F, Sun Y, Song H, Zhao J, Zhang Z, Duan Y, Chen R. J. Org. Chem. 2021; 86: 15631
    • 17g Chen YJ, Zhang FG, Ma JA. Org. Lett. 2021; 23: 6062
    • 17h Balalaie S, Nikbakht A, Mohammadi F, Mousavi MS, Amiri K, Rominger F, Bijanzadeh HR. Synthesis 2021; 53: 4654
    • 17i Sujatha C, Nallagangula M, Namitharan K. Org. Lett. 2021; 23: 4219
    • 17j Cao S, Tang T, Li J, He Z. Org. Chem. Front. 2022; 9: 3342
    • 17k Filippov IP, Novikov MS, Khlebnikov AF, Rostovskii NV. J. Org. Chem. 2022; 87: 8835
  • 18 Li T, Xu F, Li X, Wang C, Wan B. Angew. Chem. Int. Ed. 2016; 55: 2861
  • 19 Xie F, Sun Y, Song H, Dong S, Zhao Q, Liu J, Miao Y. Org. Lett. 2022; 24: 268
    • 20a Wu F, Chen W, Liu M, Wu H. Eur. J. Org. Chem. 2018; 5553
    • 20b Wu F, Zhang M, Zhou W, Chen W, Liu M, Wu H. J. Org. Chem. 2018; 83: 5999
    • 20c Xu F, Si XJ, Song YY, Wang XD, Liu CS, Geng PF, Du M. J. Org. Chem. 2019; 84: 2200
    • 20d De A, Santra S, Zyryanov GV, Majee A. Org. Lett. 2020; 22: 3926
    • 20e Zhang J, Yang M, Liu JB, He FS, Wu J. Chem. Commun. 2020; 56: 3225
    • 20f Liu Y, He Z, Ma W, Bao G, Li Y, Yu C, Li J, E, R. Xu Z, Wang R, Sun W. Org. Lett. 2022; 24: 9248
    • 21a Lv Y, Li Y, Xiong T, Pu W, Zhang H, Sun K, Liu Q, Zhang Q. Chem. Commun. 2013; 49: 6439
    • 21b Meng D, Tang Y, Wei J, Shi X, Yang M. Chem. Commun. 2017; 53: 5744
    • 21c Shen K, Wang Q. Chem. Sci. 2017; 8: 8265
    • 21d Zhang F, Zheng D, Lai L, Cheng J, Sun J, Wu J. Org. Lett. 2018; 20: 1167