Informationen aus Orthodontie & Kieferorthopädie 2023; 55(01): 7-12
DOI: 10.1055/a-2021-5210
Übersichtsartikel

Digitales Design und Herstellung gedruckter Titan-Platten für die kieferorthopädische Therapie: CAD/CAM Mentoplate

Digital Design and Manufacturing of Titanium-Plates for Orthodontic Treatments: CAD/CAM Mentoplate
Maximilian Küffer
1   Poliklinik für Kieferorthopädie, Westdeutsche Kieferklinik, Universitätsklinikum Düsseldorf, Deutschland
,
Benedict Wilmes
1   Poliklinik für Kieferorthopädie, Westdeutsche Kieferklinik, Universitätsklinikum Düsseldorf, Deutschland
,
Dieter Drescher
1   Poliklinik für Kieferorthopädie, Westdeutsche Kieferklinik, Universitätsklinikum Düsseldorf, Deutschland
› Author Affiliations

Zusammenfassung

Die Knochenmorphologie jedes Menschen weist einzigartige Strukturen auf. Deshalb lassen sich Mini-Platten, wie beispielsweise die Mentoplate, nur in stark vereinfachter Form konfektioniert herstellen. Konfektionierte Platten benötigen deshalb eine zeitaufwendige intraoperative Anpassung, um annähernd den knöchernen Strukturen zu entsprechen. Durch Intraoralscans und dreidimensionale Bildgebung lässt sich die anatomische Situation so präzise wiedergeben, dass im CAD/CAM-Verfahren individualisierte Mini-Platten und kieferorthopädische Apparaturen hergestellt werden können. Dies reduziert Risiken und Komplikationen, die mit der Insertion einer Mini-Platte einhergehen können. Da die Mini-Platten zudem mithilfe einer Einsetzhilfe (Insertions-Guide) eingesetzt werden, ermöglicht dies eine präzise Umsetzung geplanter Zahnbewegungen und verringert die Operationsdauer bei der Insertion deutlich. Der vorliegende Artikel beschreibt mögliche digitale Herstellungsverfahren zur Anfertigung individuell gedruckter Mini-Platten und der auf diesen verankerten kieferorthopädischen Apparaturen.

Abstract

Due to the uniqueness of every human’s bone structure, preformed mini-plates can only be manufactured in a simple form.

Mini-plates require a time-consuming intraoperative adjustment to fit the specific bone structures appropriatly. Using intraoral scans and three-dimensional reconstruction, the anatomical situation can be reproduced with sufficient precision to manufacture individualized mini-plates and orthodontic appliances in the CAD/CAM process. This reduces risks and complications that are associated with the insertion of mini-plates. Since these mini-plates can also be installed using an insertion guide, the precise implementation of planned tooth movements can be assured and the surgical time can be reduced. This article describes possible digital manufacturing processes for producing individual printed mini-plates and the orthodontic appliances anchored on them.



Publication History

Article published online:
04 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Graf S. et al. Computer-aided design and manufacture of hyrax devices: Can we really go digital?. Am J Orthod Dentofacial Orthop 2017; 152: 870-874
  • 2 Graf S, Vasudavan S, Wilmes B. CAD-CAM design and 3-dimensional printing of mini-implant retained orthodontic appliances. Am J Orthod Dentofacial Orthop 2018; 154: 877-882
  • 3 Clemente R. et al. Class III Treatment with Skeletal and Dental Anchorage: A Review of Comparative Effects. Biomed Res Int 2018; 2018: 7946019
  • 4 Wilmes B, Olthoff G, Drescher D. Comparison of skeletal and conventional anchorage methods in conjunction with pre-operative decompensation of a skeletal class III malocclusion. J Orofac Orthop 2009; 70: 297-305
  • 5 Proffit WR, Fields HW. Contemporary Orthodontics. Mosby-Year Book; 1993
  • 6 Nienkemper M. et al. Extrusion of impacted teeth using mini-implant mechanics. J Clin Orthod 2012; 46: 150-155 quiz 183
  • 7 Nienkemper M, Handschel J, Drescher D. Systematic review of mini-implant displacement under orthodontic loading. Int J Oral Sci 2014; 6: 1-6
  • 8 Wilmes B. et al. Mini-Implantate zur kieferorthopädischen Verankerung im anterioren Gaumen, mediane vs. paramediane Insertion. Informationen aus Orthodontie & Kieferorthopädie 2015; 47: 243-248
  • 9 Wilmes B. et al. The T-Zone: Median vs. Paramedian Insertion of Palatal Mini-Implants. J Clin Orthod 2016; 50: 543-551
  • 10 Becker K. et al. Efficacy of orthodontic mini implants for en masse retraction in the maxilla: a systematic review and meta-analysis. Int J Implant Dent 2018; 4: 35
  • 11 Becker K. et al. Skeletally anchored mesialization of molars using digitized casts and two surface-matching approaches: Analysis of treatment effects. J Orofac Orthop 2018; 79: 11-18
  • 12 Fritz U, Ehmer A, Diedrich P. Clinical suitability of titanium microscrews for orthodontic anchorage-preliminary experiences. J Orofac Orthop 2004; 65: 410-418
  • 13 Wilmes B, Drescher D. A miniscrew system with interchangeable abutments. J Clin Orthod 2008; 42: 574-580 quiz 595
  • 14 Freudenthaler JW, Haas R, Bantleon HP. Bicortical titanium screws for critical orthodontic anchorage in the mandible: a preliminary report on clinical applications. Clin Oral Implants Res 2001; 12: 358-363
  • 15 Ludwig B. et al. Anatomical guidelines for miniscrew insertion: palatal sites. J Clin Orthod 2011; 45: 433-441 quiz 467
  • 16 Mohammed H. et al. Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: a systematic review and meta-analysis. Prog Orthod 2018; 19: 36
  • 17 Nienkemper M. et al. Preprosthetic molar uprighting using skeletal anchorage. J Clin Orthod 2013; 47: 433-437
  • 18 Ludwig B. et al. Anatomical guidelines for miniscrew insertion: Vestibular interradicular sites. J Clin Orthod 2011; 45: 165-173
  • 19 Poggio PM. et al. “Safe zones”: a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod 2006; 76: 191-197
  • 20 Chen YH. et al. Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate: an animal study. Clin Oral Implants Res 2008; 19: 99-106
  • 21 Kadioglu O. et al. Contact damage to root surfaces of premolars touching miniscrews during orthodontic treatment. Am J Orthod Dentofacial Orthop 2008; 134: 353-360
  • 22 Arqub SA. et al. Survival estimates and risk factors for failure of palatal and buccal mini-implants. Angle Orthod 2021; 91: 756-763
  • 23 Wilmes B. et al Early Class III treatment with a hybrid hyrax-mentoplate combination. J Clin Orthod 2011; 45: 15-21 quiz 39
  • 24 Katyal V. et al. The efficacy of Hybrid Hyrax-Mentoplate combination in early Class III treatment: a novel approach and pilot study. Aust Orthod J 2016; 32: 88-96
  • 25 Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput 2013; 51: 245-256
  • 26 Gokuldoss PK, Kolla S, Eckert J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines. Materials (Basel) 2017; 10
  • 27 Lin L. et al. 3D printing and digital processing techniques in dentistry: A review of literature. Advanced Engineering Materials 2019; 21: 1801013
  • 28 Tian Y. et al. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021; 2021: 9950131
  • 29 Al Maaz A. et al. Effect of finish line design and metal alloy on the marginal and internal gaps of selective laser melting printed copings. J Prosthet Dent 2019; 122: 143-151
  • 30 Presotto AGC. et al. Dimensional precision of implant-supported frameworks fabricated by 3D printing. J Prosthet Dent 2019; 122: 38-45
  • 31 Akçin ET. et al. Effect of manufacturing techniques on the marginal and internal fit of cobalt-chromium implant-supported multiunit frameworks. J Prosthet Dent 2018; 120: 715-720
  • 32 Bae S. et al. Reliability of Metal 3D Printing with Respect to the Marginal Fit of Fixed Dental Prostheses: A Systematic Review and Meta-Analysis. Materials (Basel) 2020; 13
  • 33 Mazzoli A, Germani M, Moriconi G. Application of optical digitizing techniques to evaluate the shape accuracy of anatomical models derived from computed tomography data. J Oral Maxillofac Surg 2007; 65: 1410-1418