Diabetologie und Stoffwechsel 2023; 18(S 02): S250-S269
DOI: 10.1055/a-1997-7789
DDG-Praxisempfehlung

Empfehlungen zur Ernährung von Personen mit Typ-1-Diabetes mellitus

Diana Rubin
1   Vivantes Klinikum Spandau, Berlin, Deutschland
2   Vivantes Humboldt Klinikum, Berlin, Deutschland
,
Anja Bosy-Westphal
3   Institut für Humanernährung, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
,
Stefan Kabisch
4   Abteilung Endokrinologie, Diabetes und Ernährungsmedizin, Charité Universitätsmedizin Berlin, Berlin, Deutschland
5   Deutsches Zentrum für Diabetesforschung (DZD), München, Deutschland
,
Peter Kronsbein
6   Fachbereich Oecotrophologie, Hochschule Niederrhein, Campus Mönchengladbach, Mönchengladbach, Deutschland
,
Karsten Müssig
7   Klinik für Innere Medizin, Gastroenterologie und Diabetologie, Franziskus-Hospital Harderberg, Niels-Stensen-Kliniken, Georgsmarienhütte, Deutschland
,
Marie-Christine Simon
8   Institut für Ernährungs- und Lebensmittelwissenschaften, Ernährung und Mikrobiom, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Deutschland
,
Astrid Tombek
9   Diabetes-Klinik Bad Mergentheim, Bad Mergentheim, Deutschland
,
Katharina S.Weber
10   Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
,
Thomas Skurk
11   ZIEL – Institute for Food & Health, Core Facility Humanstudien, Technische Universität München, München, Deutschland
,
für den Ausschuss Ernährung der DDG › Author Affiliations
Aktualisierungshinweis

Die DDG-Praxisempfehlungen werden regelmäßig zur zweiten-Jahreshälfte aktualisiert. Bitte stellen Sie sicher, dass Sie jeweils die neueste Version lesen und zitieren.

Inhaltliche Neuerungen Gegenüber der Vorjahresfassung

Neuerung 1: rtCGM und scCGM als CGM-Systeme zusammengefasst

Begründung: Unterscheidung in diesem Kontext nicht weiter sinnvoll

Neuerung 2: Ergänzender Kommentar zu „Ernährungsmustern – (Eating patterns)“

Begründung: Zunehmende Erkenntnisse bei T1Dm im Rahmen einer vegetarischen/veganen Kost

Abkürzungen

ADI: Acceptable Daily Intake
AID: Automatische Insulin-Dosierung
AHEI: Alternative Healthy Eating Index
CGM: Continuous glucose monitoring
CSII: Kontinuierliche subkutane Insulininfusion
d: Tag
DASH: Dietary Approaches to Stop Hypertension
DHS: Deutsche Hauptstelle für Suchtfragen e. V.
EFSA: European Food Safety Authority
EN %: Energieprozent
GI: Glykämischer Index
HDL: High-Density Lipoprotein
HEI: Healthy Eating Index
kcal: Kilokalorien
KE: Kohlenhydratmenge/Kohlenhydrateinheit
KG: Körpergewicht
KH: Kohlenhydrate
LDL: Low-Density Lipoprotein
MNA: Mini Nutritional Assessment
MUFAs: Einfach ungesättigte Fettsäuren
PUFAs: Mehrfach ungesättigte Fettsäuren
RCFAs: Red cell phospholipid fatty acids
RCT: Randomisierte kontrollierte Studien
SFAs: Gesättigte Fettsäuren
T1Dm: Typ-1-Diabetes mellitus
T2Dm: Typ-2-Diabetes mellitus
WHO: Weltgesundheitsorganisation
WPFD: Whole Plant Food Density



Publication History

Article published online:
30 October 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Beck J, Greenwood DA, Blanton L. et al. 2017 National Standards for Diabetes Self-Management Education and Support. Diabetes Educ 2020; 46: 46-61
  • 2 Beck J, Greenwood DA, Blanton L. et al. 2017 National Standards for Diabetes Self-Management Education and Support. Diabetes Care 2017; 40: 1409-1419
  • 3 Evert AB, Dennison M, Gardner CD. et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42: 731-754
  • 4 Ausschuss Ernährung der Deutschen Diabetes Gesellschaft. Stellungnahme des Ausschuss Ernährung der DDG zum Consensus Report: Nutrition Therapy for Adults with Diabetes or Prediabetes. Im Internet (Stand: 12.06.2023): https://www.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/06_Gesundheitspolitik/01_Stellungnahmen/2019/20190927_Ausschuss_Ernaehrung_DDG_Stellungnahme_zu_den_ADA_Ernaehrungsempfehlungen.pdf
  • 5 American Diabetes Association. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020; 43: S48-S65
  • 6 Dyson PA, Twenefour D, Breen C. et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet Med 2018; 35: 541-547
  • 7 Dworatzek PD, Arcudi K, Gougeon R. et al. Nutrition therapy. Can J Diabetes 2013; 37 (Suppl. 01) S45-S55
  • 8 Kröger J, Siegmund T, Schubert-Olesen O. et al. AGP-Fibel Ernährung. Mit CGM postprandiale Glukoseverläufe analysieren. Mainz: Kirchheim + Co; 2020
  • 9 Scavone G, Manto A, Pitocco D. et al. Effect of Carbohydrate Counting and Medical Nutritional Therapy on Glycaemic Control in Type 1 Diabetic Subjects: A Pilot Study. Diabet Med 2010; 27: 477-479
  • 10 Smart CE, King BR, McElduff P. et al. In children using intensive insulin therapy, a 20g variation in carbohydrate amount signigicantly impacts on postprandial glycaemia. Diabet Med 2012; 29: e21-e24
  • 11 Bell KJ, King BR, Shafat A. et al. The Relationship Between Carbohydrate and the Mealtime Insulin Dose in Type 1 Diabetes. J Diabetes Complicat 2015; 29: 1323-1329
  • 12 Smart CE, Ross K. et al. Can children with Type 1 diabetes and their caregivers estimate the carbohydrate conent of meals and snacks. Diabet Med 2010; 27: 348-353
  • 13 Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008; 31: 2281-2283
  • 14 Chantelau EA. Quantifizierung des Blutglukoseeffekts der Nahrungsmittel: der glykämische Index. In: Berger M. Hrsg. Diabetes mellitus. 2. Aufl.. München Jena: Urban & Fischer; 2000: 158-163
  • 15 Strohm D. Glykämischer Index und glykämische Last – ein für die Ernährungspraxis des Gesunden relevantes Konzept? Wissenschaftliche Stellungnahme der DGE. Ernährungs Umschau 2013; 60: M26-M38
  • 16 Chantelau E, Kronsbein P, Kempf U. et al. Untersuchung zum Mahlzeitenbezogenen Insulinbedarf von Linsen und Kartoffeln bei Patienten mit Typ-I Diabetes mellitus. Aktuelle Ernährungsmedizin 1989; 14: 175-178
  • 17 Lafrance L, Rabasa-Lhoret R, Poisson D. et al. Effects of different glycaemic index foods and dietary fibre intake on glycaemic control in type 1 diabetic patients on intensive insulin therapy. Diabet Med 1998; 15: 972-978
  • 18 Parillo M, Annuzzi G, Rivellese AA. et al. Effects of meals with different glycaemic index on postprandial blood glucose response in patients with Type 1 diabetes treated with continuous subcutaneous insulin infusion. Diabet Med 2011; 28: 227-229
  • 19 Chantelau E, Spraul M, Kunze K. et al. Effects of the glycaemic index of dietary carbohydrates on prandial glycaemia and insulin therapy in type I diabetes mellitus. Diabetes Res Clin Pract 1986; 2: 35-41
  • 20 Fontvieille AM, Acosta M, Rizkalla SW. et al. A moderate switch from high to low glycaemic-index foods for 3 weeks improves the metabolic control of Type I (IDDM) diabetic subjects. Diabetes Nutr Metab 1988; 1: 139-143
  • 21 Thomas DE, Elliott EJ. The use of low-glycaemic index diets in diabetes control. Br J Nutr 2010; 104: 797-802
  • 22 Giacco R, Parillo M, Rivellese AA. et al. Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural foods improves blood glucose control and reduces the number of hypoglycemic events in type 1 diabetic patients. Diabetes Care 2000; 23: 1461-1466
  • 23 Fontvieille AM, Rizkalla SW, Penfornis A. et al. The use of low glycaemic index foods improves metabolic control of diabetic patients over five weeks. Diabet Med 1992; 9: 444-450
  • 24 Vega-López S, Venn BJ, Slavin JL. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients 2018; 10: 1361
  • 25 Nansel TR, Gellar L, McGill A. Effect of varying glycemic index meals on blood glucose control assessed with continuous glucose monitoring in youth with type 1 diabetes on basal-bolus insulin regimens. Diabetes Care 2008; 31: 695-697
  • 26 Ryan RL, King BR, Anderson DG. et al. Influence of and optimal insulin therapy for a low-glycemic index meal in children with type 1 diabetes receiving intensive insulin therapy. Diabetes Care 2008; 31: 1485-1490
  • 27 Collier GR, Giudici S, Kalmusky J. et al. Low glycaemic index starchy foods improve glucose control and lower serum cholesterol in diabetic children. Diabetes Nutr Metab 1988; 1: 11-19
  • 28 Gilbertson HR, Brand-Miller JC, Thorburn AW. et al. The effect of flexible low glycemic index dietary advice versus measured carbohydrate exchange diets on glycemic control in children with type 1 diabetes. Diabetes Care 2001; 24: 1137-1143
  • 29 Pańkowska E, Błazik M, Groele L. Does the fat-protein meal increase postprandial glucose level in type 1 diabetes patients on insulin pump: the conclusion of a randomized study. Diabetes Technol Ther 2012; 14: 16-22
  • 30 Winiger G, Keller U, Laager R. et al. Protein content of the evening meal and nocturnal plasma glucose regulation in type-I diabetic subjects. Horm Res 1995; 44: 101-104
  • 31 Smart CEM, Evans M, O’Connell SM. et al. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care 2013; 36: 3897-3902
  • 32 Pańkowska E, Błazik M. Bolus calculator with nutrition database software, a new concept of prandial insulin programming for pump users. J Diabetes Sci Technol 2010; 4: 571-576
  • 33 Hermann K. et al Untersuchungen zur Effektivität und Sicherheit einer zusätzlichen Insulingabe für Mahlzeiten mit hohem Fett-und Eiweißgehalt bei Patienten mit Typ-1-Diabetes mellitus. Im Rahmen einer Promotionsarbeit 2019
  • 34 Eschenburger S, Tombek A. et al Untersuchung einer Nussmahlzeit als Spätmahlzeit unter Berücksichtigung einer kontinuierlichen Glucosemessung. Im Rahmen einer Masterarbeit, nicht veröffentlicht, 2020
  • 35 Krems C, Walter C, Heuer T. et al Nationale Verzehrsstudie II – Lebensmittelverzehr und Naehrstoffzufuhr auf Basis von 24h-Recalls. Max Rubner-Institut 2013. Im Internet (Stand: 12.06.2023): https://www.mri.bund.de/fileadmin/MRI/Institute/EV/Lebensmittelverzehr_N%C3%A4hrstoffzufuhr_24h-recalls-neu.pdf
  • 36 Hakola L, Miettinen ME, Syrjälä E. et al. Association of Cereal, Gluten, and Dietary Fiber Intake With Islet Autoimmunity and Type 1 Diabetes. JAMA Pediatr 2019; 173: 953-960
  • 37 de Carvalho CM, Gross LA, de Azevedo MJ. et al. Dietary Fiber Intake (Supplemental or Dietary Pattern Rich in Fiber) and Diabetic Kidney Disease: A Systematic Review of Clinical Trials. Nutrients 2019; 11: 347
  • 38 Beretta MV, Bernaud FR, Nascimento C. et al. Higher fiber intake is associated with lower blood pressure levels in patients with type 1 diabetes. Arch Endocrinol Metab 2018; 62: 47-54
  • 39 Bernaud FSR, Beretta MV, do Nascimento C. et al. Fiber intake and inflammation in type 1 diabetes. Diabetol Metab Syndr 2014; 6: 66
  • 40 Mottalib A, Kasetty M, Mar JY. et al. Weight Management in Patients with Type 1 Diabetes and Obesity. Curr Diab Rep 2017; 17: 92
  • 41 Basu A, Alman AC, Snell-Bergeon JK. Dietary fiber intake and glycemic control: coronary artery calcification in type 1 diabetes (CACTI) study. Nutr J 2019; 18: 23
  • 42 Ho J, Nicolucci AC, Virtanen H. et al. Effect of Prebiotic on Microbiota, Intestinal Permeability, and Glycemic Control in Children With Type 1 Diabetes. J Clin Endocrinol Metab 2019; 104: 4427-4440
  • 43 European Commission. Health Promotion and Disease Prevention Knowledge Gateway. Sugars and Sweeteners (01.02.2020). Im Internet (Stand: 12.06.2023): https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotionprevention/nutrition/sugars-sweeteners
  • 44 Franz MJ, Powers MA, Leontos C. et al. The Evidence for Medical Nutrition Therapy for Type 1 and Type 2 Diabetes in Adults. J Am Diet Assoc 2010; 110: 1852-1889
  • 45 Rippe JM, Angelopoulos TJ. Sugars, obesity, and cardiovascular disease: results from recent randomized control trials. Eur J Nutr 2016; 55: 45-53
  • 46 Souto DL, Zajdenverg L, Rodacki M. et al. Does sucrose intake affect antropometric variables, glycemia, lipemia and C-reactive protein in subjects with type 1 diabetes?: a controlled-trial. Diabetol Metab Syndr 2013; 5: 67
  • 47 Rippe JM, Angelopoulos TJ. Sugars, obesity, and cardiovascular disease: results from recent randomized control trials. Eur J Nutr 2016; 55: 45-53
  • 48 Cozma AI, Sievenpiper JL, de Souza RJ. et al. Effect of Fructose on Glycemic Control in Diabetes: A systematic review and meta-analysis of controlled feeding trials. Diabetes Care 2012; 35: 1611-1620
  • 49 Evans RA, Frese M, Romero J. et al. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106: 506-518
  • 50 Sievenpiper JL, Carleton AJ, Chatha S. et al. Heterogeneous Effects of Fructose on Blood Lipids in Individuals With Type 2 Diabetes: Systematic review and meta-analysis of experimental trials in humans. Diabetes Care 2009; 32: 1930-1937
  • 51 Souto DL, Lima ÉS, Dantas JR. et al. Postprandial metabolic effects of fructose and glucose in type 1 diabetes patients: a pilot randomized crossover clinical trial. Arch Endocrinol Metab 2019; 63: 376-384
  • 52 European Commission. Health Promotion and Disease Prevention Knowledge Gateway: Sugars and Sweeteners. Im Internet (Stand: 12.06.2023): https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotionprevention/nutrition/sugars-sweeteners
  • 53 American Diabetes Association (ADA). 4. Foundations of Care: Education, Nutrition, Physical Activity, Smoking Cessation, Psychosocial Care, and Immunization. Diabetes Care 2014; 38: 20-31
  • 54 Evert AB, Dennison M, Gardner CD. et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42: 731-754
  • 55 Sjöblad S. Could the high consumption of high glycaemic index carbohydrates and sugars, associated with the nutritional transition to the Western type of diet, be the common cause of the obesity epidemic and the worldwide increasing incidences of Type 1 and Type 2 diabetes?. Med Hypotheses 2019; 125: 41-50
  • 56 Lamb MM, Frederiksen B, Seifert JA. et al. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young. Diabetologia 2015; 58: 2027-2034
  • 57 Couch SC, Crandell JL, Shah AS. et al. Fructose intake and cardiovascular risk factors in youth with type 1 diabetes: SEARCH for diabetes in youth study. Diabetes Res Clin Pract 2013; 100: 265-271
  • 58 Nansel TR, Lipsky LM, Liu A. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes. Am J Clin Nutr 2016; 104: 81-87
  • 59 European Food Safety Authority (EFSA) schließt vollständige Risikobewertung zu Aspartam ab und kommt zu dem Schluss, dass es in den derzeitigen Expositionsmengen sicher ist, 10.12.2013. Im Internet (Stand: 02.08.2020): https://www.efsa.europa.eu/de/press/news/131210
  • 60 Toews I, Lohner S, Küllenberg de Gaudry D. et al. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ 2019; 364: k4718
  • 61 Sylvetsky AC, Rother KI. Nonnutritive Sweeteners in Weight Management and Chronic Disease: A Review. Obesity (Silver Spring) 2018; 26: 635-640
  • 62 Ashwell M, Gibson S, Bellisle F. et al. Expert consensus on low-calorie sweeteners: facts, research gaps and suggested actions. Nutr Res Rev 2020; 33: 1-10
  • 63 Romo-Romo A, Aguilar-Salinas CA, Brito-Córdova GX. et al. Effects of the Non-Nutritive Sweeteners on Glucose Metabolism and Appetite Regulating Hormones: Systematic Review of Observational Prospective Studies and Clinical Trials. PLoS One 2016; 11: e0161264
  • 64 Rogers PJ, Hogenkamp PS, de Graaf C. et al. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes (Lond) 2016; 40: 381-394
  • 65 Fantino M, Fantino A, Matray M. et al. Beverages containing low energy sweeteners do not differ from water in their effects on appetite, energy intake and food choices in healthy, non-obese French adults. Appetite 2018; 125: 557-565
  • 66 Bellisle F. Intense Sweeteners, Appetite for the Sweet Taste, and Relationship to Weight Management. Curr Obes Rep 2015; 4: 106-110
  • 67 Lobach AR, Roberts A, Rowland IR. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem Toxicol 2019; 124: 385-399
  • 68 Ahmad SY, Azad MB, Friel J. et al. Recent evidence for the effects of nonnutritive sweeteners on glycaemic control. Curr Opin Clin Nutr Metab Care 2019; 22: 278-283
  • 69 Hunter SR, Reister EJ, Cheon E. et al. Low Calorie Sweeteners Differ in Their Physiological Effects in Humans. Nutrients 2019; 11: 2717
  • 70 S3-Leitlinie Therapie des Typ-1-Diabetes, 2. Auflage. Im Internet (Stand: 12.06.2023): https://www.awmf.org/uploads/tx_szleitlinien/057-013l_S3-Therapie-Typ-1-Diabetes_2018-08.pdf
  • 71 Nansel TR, Lipsky LM, Liu A. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes. Am J Clin Nutr 2016; 104: 81-87
  • 72 Nezu U, Kamiyama H, Kondo Y. et al. Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomised controlled trials. BMJ Open 2013; 3: e002934
  • 73 Dussol B, Iovanna C, Raccah D. et al. A randomized trial of low-protein diet in type 1 and in type 2 diabetes mellitus patients with incipient and overt nephropathy. J Ren Nutr 2005; 15: 398-406
  • 74 Seckold R, Fisher E, de Bock M. et al. The ups and downs of low-carbohydrate diets in the management of Type 1 diabetes: a review of clinical outcomes. Diabet Med 2019; 36: 326-334
  • 75 Donaghue KC, Pena MM, Chan AKF. et al. Beneficial effects of increasing monounsaturated fat intake in adolescents with type 1 diabetes. Diabetes Res Clin Pract 2000; 48: 193-199
  • 76 Gingras V, Leroux C, Desjardins K. et al. Association between Cardiometabolic Profile and Dietary Characteristics among Adults with Type 1 Diabetes Mellitus. J Acad Nutr Diet 2015; 115: 1965-1974
  • 77 Fortin A, Rabasa-Lhoret R, Lemieux S. et al. Comparison of a Mediterranean to a low-fat diet intervention in adults with type 1 diabetes and metabolic syndrome: A 6-month randomized trial. Nutr Metab Cardiovasc Dis 2018; 28: 1275-1284
  • 78 Cadario F, Prodam F, Pasqualicchio S. et al. Lipid profile and nutritional intake in children and adolescents with Type 1 diabetes improve after a structured dietician training to a Mediterranean-style diet. J Endocrinol Invest 2012; 35: 160-168
  • 79 Zhong VW, Lamichhane AP, Crandell JL. et al. Association of adherence to a Mediterranean diet with glycemic control and cardiovascular risk factors in youth with type I diabetes: the SEARCH Nutrition Ancillary Study. Eur J Clin Nutr 2016; 70: 802-807
  • 80 Günther ALB, Liese AD, Bell RA. et al. Association between the dietary approaches to hypertension diet and hypertension in youth with diabetes mellitus. Hypertension 2009; 53: 6-12
  • 81 Liese AD, Bortsov A, Günther ALB. et al. Association of DASH diet with cardiovascular risk factors in youth with diabetes mellitus: the SEARCH for Diabetes in Youth study. Circulation 2011; 123: 1410-1417
  • 82 Peairs AD, Shah AS, Summer S. et al. Effects of the dietary approaches to stop hypertension (DASH) diet on glucose variability in youth with Type 1 diabetes. Diabetes Manag (Lond) 2017; 7: 383-391
  • 83 Nansel TR, Haynie DL, Lipsky LM. et al. Multiple indicators of poor diet quality in children and adolescents with type 1 diabetes are associated with higher body mass index percentile but not glycemic control. J Acad Nutr Diet 2012; 112: 1728-1735
  • 84 Powers MA, Gal RL, Connor CG. et al. Eating patterns and food intake of persons with type 1 diabetes within the T1D exchange. Diabetes Res Clin Pract 2018; 141: 217-228
  • 85 Sanjeevi N, Lipsky LM, Nansel TR. Cardiovascular Biomarkers in Association with Dietary Intake in a Longitudinal Study of Youth with Type 1 Diabetes. Nutrients 2018; 10: 1552
  • 86 Petersen KS, Keogh JB, Lister NB. et al. Dietary quality and carotid intima media thickness in type 1 and type 2 diabetes: Follow-up of a randomised controlled trial. Nutr Metab Cardiovasc Dis 2018; 28: 830-838
  • 87 Costacou T, Crandell J, Kahkoska AR. et al. Dietary Patterns Over Time and Microalbuminuria in Youth and Young Adults With Type 1 Diabetes: The SEARCH Nutrition Ancillary Study. Diabetes Care 2018; 41: 1615-1622
  • 88 Liese AD, Ma X, Ma X. et al. Dietary quality and markers of inflammation: No association in youth with type 1 diabetes. J Diabetes Complicat 2018; 32: 179-184
  • 89 Ahola AJ, Freese R, Mäkimattila S. et al. Dietary patterns are associated with various vascular health markers and complications in type 1 diabetes. J Diabetes Complicat 2016; 30: 1144-1150
  • 90 Ahola AJ, Gordin D, Forsblom C. et al. Association between diet and measures of arterial stiffness in type 1 diabetes – Focus on dietary patterns and macronutrient substitutions. Nutr Metab Cardiovasc Dis 2018; 28: 1166-1172
  • 91 Jaacks LM, Crandell J, Mendez MA. et al. Dietary patterns associated with HbA1c and LDL cholesterol among individuals with type 1 diabetes in China. J Diabetes Complicat 2015; 29: 343-349
  • 92 Lamichhane AP, Liese AD, Urbina EM. et al. Associations of dietary intake patterns identified using reduced rank regression with markers of arterial stiffness among youth with type 1 diabetes. Eur J Clin Nutr 2014; 68: 1327-1333
  • 93 van Bussel BCT, Soedamah-Muthu SS, Henry RMA. et al. Unhealthy dietary patterns associated with inflammation and endothelial dysfunction in type 1 diabetes: the EURODIAB study. Nutr Metab Cardiovasc Dis 2013; 23: 758-764
  • 94 Ahola AJ, Forsblom C, Groop PH. Adherence to special diets and its association with meeting the nutrient recommendations in individuals with type 1 diabetes. Acta Diabetol 2018; 55: 843-851
  • 95 Scarpello JH. Treatment of a diabetic vegetarian with human insulin (recombinant DNA): a case report. Diabetes Care 1982; 5 (Suppl. 02) 180
  • 96 Whorton JC. Historical development of vegetarianism. Am J Clin Nutr 1994; 59 (Suppl. 05) 1103S-1109S
  • 97 Santos ML, Booth DA. Influences on meat avoidance among British students. Appetite 1996; 27: 197-205
  • 98 Rudkin CL. Vegetarian diet planning for adolescents with diabetes. Pediatr Nurs 1999; 25: 262-266
  • 99 Tromba V, Silvestri F. Vegetarianism and type 1 diabetes in children. Metabol Open 2021; 11: 100099
  • 100 Agnoli C, Baroni L, Bertini I. et al. Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition. Nutr Metab Cardiovasc Dis 2017; 27: 1037-1052
  • 101 Barberi S, Bergamini M, Banani RB. et al. Position paper: Diete vegetariane in gravidanza ed in età evolutiva. Pediatria Preventiva & Sociale 2017; (Suppl. 03) 1-77
  • 102 Kontessis PA, Bossinakou I, Sarika L. et al. Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients. Diabetes Care 1995; 18: 1233
  • 103 Jibani MM, Bloodworth LL, Foden E. et al. Predominantly vegetarian diet in patients with incipient and early clinical diabetic nephropathy: effects on albumin excretion rate and nutritional status. Diabet Med 1991; 8: 949-953
  • 104 Zuromski KL, Witte TK, Smith AR. et al. Increased prevalence of vegetarianism among women with eating pathology. Eat Behav 2015; 19: 24-27
  • 105 Siepmann T, Roofeh J, Kiefer FW. et al. Hypogonadism and erectile dysfunction associated with soy product consumption. Nutrition 2011; 27: 859-862
  • 106 Gill S, Panda S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab 2015; 22: 789-798
  • 107 Kahleova H, Lloren JI, Mashchak A. et al. Meal Frequency and Timing Are Associated with Changes in Body Mass Index in Adventist Health Study 2. J Nutr 2017; 147: 1722-1728
  • 108 McCrory MA, Howarth NC, Roberts SB. et al. Eating frequency and energy regulation in free-living adults consuming self-selected diets. J Nutr 2011; 141: 148-153
  • 109 Ohkawara K, Cornier MA, Kohrt WM. et al. Effects of increased meal frequency on fat oxidation and perceived hunger. Obesity (Silver Spring) 2013; 21: 336-343
  • 110 Kahleova H, Belinova L, Malinska H. et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia 2014; 57: 1552-1560
  • 111 Koopman KE, Caan MWA, Nederveen AJ. et al. Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: a randomized controlled trial. Hepatology 2014; 60: 545-553
  • 112 St-Onge MP, Ard J, Baskin ML. et al. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circulation 2017; 135: e96-e121
  • 113 Stote KS, Baer DJ, Spears K. et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr 2007; 85: 981-988
  • 114 Tinsley GM, Forsse JS, Butler NK. et al. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur J Sport Sci 2017; 17: 200-207
  • 115 Moro T, Tinsley G, Bianco A. et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med 2016; 14: 290
  • 116 Nas A, Mirza N, Hägele F. et al. Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am J Clin Nutr 2017; 105: 1351-1361
  • 117 Sutton EF, Beyl R, Early KS. et al. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab 2018; 27: 1212-1221.e3
  • 118 Ravussin E, Beyl RA, Poggiogalle E. et al. Early Time-Restricted Feeding Reduces Appetite and Increases Fat Oxidation But Does Not Affect Energy Expenditure in Humans. Obesity (Silver Spring) 2019; 27: 1244-1254
  • 119 Mattson MP, Allison DB, Fontana L. et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A 2014; 111: 16647-16653
  • 120 Bo S, Fadda M, Castiglione A. et al. Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. Int J Obes (Lond) 2015; 39: 1689-1695
  • 121 Henry CJ, Kaur B, Quek RYC. Chrononutrition in the management of diabetes. Nutr Diabetes 2020; 10: 6
  • 122 Wilkinson MJ, Manoogian ENC, Zadourian A. et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab 2020; 31: 92-104.e5
  • 123 Trepanowski JF, Kroeger CM, Barnosky A. et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Intern Med 2017; 177: 930-938
  • 124 Sundfør TM, Svendsen M, Tonstad S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: A randomized 1-year trial. Nutr Metab Cardiovasc Dis 2018; 28: 698-706
  • 125 Schübel R, Nattenmüller J, Sookthai D. et al. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: a randomized controlled trial. Am J Clin Nutr 2018; 108: 933-945
  • 126 Carter S, Clifton PM, Keogh JB. Effect of Intermittent Compared With Continuous Energy Restricted Diet on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Noninferiority Trial. JAMA Netw Open 2018; 1: e180756
  • 127 Corley BT, Carroll RW, Hall RM. et al. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med 2018; 35: 588-594
  • 128 Horne BD, Grajower MM, Anderson JL. Limited Evidence for the Health Effects and Safety of Intermittent Fasting Among Patients With Type 2 Diabetes. JAMA 2020; 324: 341-342
  • 129 Lawrence JM, Liese AD, Liu L. et al. Weight-loss practices and weightrelated issues among youth with type 1 or type 2 diabetes. Diabetes Care 2008; 31: 2251-2257
  • 130 Kahkoska AR, Watts ME, Driscoll KA. et al. Understanding antagonism and synergism: A qualitative assessment of weight management in youth with Type 1 diabetes mellitus. Obes Med 2018; 9: 21-31
  • 131 Strychar I, Cohn JS, Renier G. et al. Effects of a diet higher in carbohydrate/lower in fat versus lower in carbohydrate/higher in monounsaturated fat on postmeal triglyceride concentrations and other cardiovascular risk factors in type 1 diabetes. Diabetes Care 2009; 32: 1597-1599
  • 132 Diabetes and Nutrition Study Group of the Spanish Diabetes Association (GSEDNu). Trial: adherence to the ADA nutritional recommendations, targets of metabolic control, and onset of diabetes complications. A 7-year, prospective, population-based, observational multicenter study. J Diabetes Complicat 2006; 20: 361-366
  • 133 Donaghue KC, Pena MM, Chan AK. et al. Beneficial effects of increasing monounsaturated fat intake in adolescents with type 1 diabetes. Diabetes Res Clin Pract 2000; 48: 193-199
  • 134 Bozzetto L, Alderisio A, Giorgini M. et al. Extra-virgin olive oil reduces glycemic response to a high-glycemic index meal in patients with type 1 diabetes: a randomized controlled trial. Diabetes Care 2016; 39: 518-524
  • 135 Rosenfalck AM, Almdal T, Viggers L. et al. A low-fat diet improves peripheral insulin sensitivity in patients with Type 1 diabetes. Diabet Med 2006; 23: 384-392
  • 136 Nielsen JV, Jönsson E, Ivarsson A. A low carbohydrate diet in type 1 diabetes: clinical experience – a brief report. Ups J Med Sci 2005; 110: 267-273
  • 137 Burge MR, Castillo KR, Schade DS. Meal composition is a determinant of lispro-induced hypoglycemia in IDDM. Diabetes Care 1997; 20: 152-155
  • 138 Ranjan A, Schmidt S, Damm-Frydenberg C. et al. Short-term effects of a low carbohydrate diet on glycaemic variables and cardiovascular risk markers in patients with type 1 diabetes: A randomized open-label crossover trial. Diabetes Obes Metab 2017; 19: 1479-1484
  • 139 Ranjan A, Schmidt S, Damm-Frydenberg C. et al. Low-Carbohydrate Diet Impairs the Effect of Glucagon in the Treatment of Insulin-Induced Mild Hypoglycemia: A Randomized Crossover Study. Diabetes Care 2017; 40: 132-135
  • 140 Rabasa-Lhoret R, Garon J, Langelier H. et al. Effects of meal carbohydrate content on insulin requirements in type 1 diabetic patients treated intensively with the basal-bolus (ultralente-regular) insulin regimen. Diabetes Care 1999; 22: 667-673
  • 141 Anderson JW, Zeigler JA, Deakins DA. et al. Metabolic effects of highcarbohydrate, high-fiber diets for insulin-dependent diabetic individuals. Am J Clin Nutr 1991; 54: 936-943
  • 142 McKewen MW, Rehrer NJ, Cox C. et al. Glycaemic control, muscle glycogen and exercise performance in IDDM athletes on diets of varying carbohydrate content. Int J Sports Med 1999; 20: 349-353
  • 143 Zavitsanou S, Massa J, Deshpande S. et al. The Effect of Two Types of Pasta Versus White Rice on Postprandial Blood Glucose Levels in Adults with Type 1 Diabetes: A Randomized Crossover Trial. Diabetes Technol Ther 2019; 21: 485-492
  • 144 Rilstone S, Reddy M, Oliver N. Glycemic Index, Extended Bolusing, and Diabetes Education in Insulin Pump Therapy (GLIDE: A Pilot Study). Diabetes Technol Ther 2019; 21: 452-455
  • 145 Bruttomesso D, Tessari P. A High-Fiber Diet Decreases Postabsorptive Protein Turnover but Does Not Alter Insulin Sensitivity in Men with Type 1 Diabetes Mellitus. J Nutr 2019; 149: 596-604
  • 146 Thinggaard M, Jacobsen R, Jeune B. et al. Is the relationship between BMI and mortality increasingly U-shaped with advancing age? A 10-year follow-up of persons aged 70-95 years. J Gerontol A Biol Sci Med Sci 2010; 65: 526-531
  • 147 Guigoz Y, Vellas BJ. Malnutrition im Alter: Das Mini Nutritional Assessment (MNA). Ther Umsch 1997; 54: 345-350
  • 148 Rubenstein LZ, Harker JO, Salvà A. et al. Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 2001; 56: M366-M372
  • 149 European Commission. Health Promotion and Disease Prevention Knowledge Gateway: Sugars and Sweeteners. Im Internet (Stand: 12.06.2023): https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/sugars-sweeteners
  • 150 Lamb MM, Frederiksen B, Seifert JA. et al. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young. Diabetologia 2015; 58: 2027-2034
  • 151 Bortsov AV, Liese AD, Bell RA. et al. Sugar-sweetened and diet beverage consumption is associated with cardiovascular risk factor profile in youth with type 1 diabetes. Acta Diabetol 2011; 48: 275-282
  • 152 Liese AD, Crandell JL, Tooze JA. et al. Sugar-sweetened beverage intake and cardiovascular risk factor profile in youth with type 1 diabetes: application of measurement error methodology in the SEARCH Nutrition Ancillary Study. Br J Nutr 2015; 114: 430-438
  • 153 Tetzschner R, Nørgaard K, Ranjan A. Effects of alcohol on plasma glucose and prevention of alcohol-induced hypoglycemia in type 1 diabetes-A systematic review with GRADE. Diabetes Metab Res Rev 2018; 34: e2965
  • 154 Liu X, Zhang Y, Wu H. et al. Intake of polyunsaturated fatty acids and risk of preclinical and clinical type 1 diabetes in children-a systematic review and meta-analysis. Eur J Clin Nutr 2019; 73: 1-8
  • 155 Cadario F, Pozzi E, Rizzollo S. et al. Vitamin D and ω-3 Supplementations in Mediterranean Diet During the 1st Year of Overt Type 1 Diabetes: A Cohort Study. Nutrients 2019; 11: 2158
  • 156 Antonucci R, Locci C, Clemente MG. et al. Vitamin D deficiency in childhood: old lessons and current challenges. J Pediatr Endocrinol Metab 2018; 31: 247-260
  • 157 Rak K, Bronkowska M. Immunomodulatory Effect of Vitamin D and Its Potential Role in the Prevention and Treatment of Type 1 Diabetes Mellitus-A Narrative Review. Molecules 2018; 24: 53
  • 158 Dong JY, Zhang WG, Chen JJ. et al. Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients 2013; 5: 3551-3562
  • 159 Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review andmeta-analysis. Arch Dis Child 2008; 93: 512-517
  • 160 Altieri B, Muscogiuri G, Barrea L. et al. Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept. Rev Endocr Metab Disord 2017; 18: 335-346
  • 161 Gregoriou E, Mamais I, Tzanetakou I. et al. The Effects of Vitamin D Supplementation in Newly Diagnosed Type 1 Diabetes Patients: Systematic Review of Randomized Controlled Trials. Rev Diabet Stud 2017; 14: 260-268
  • 162 Thorsen SU, Halldorsson TI, Bjerregaard AA. et al. Maternal and Early Life Iron Intake and Risk of Childhood Type 1 Diabetes: A Danish Case-Cohort Study. Nutrients 2019; 11: 734
  • 163 Lin CC, Huang YL. Chromium, zinc and magnesium status in type 1 diabetes. Curr Opin Clin Nutr Metab Care 2015; 18: 588-592
  • 164 Jayawardena R, Ranasinghe P, Galappatthy P. et al. Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 2012; 4: 13
  • 165 Chimienti F. Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev 2013; 26: 1-11
  • 166 Berufsverbund für gesundheitlichen Verbraucherschutz & Vorsorge (BgVV). Abschlussbericht der Arbeitsgruppe „Probiotische Mikroorganismenkulturen in Lebensmitteln“ am BgVV. Im Internet (Stand: 12.06.2023): https://mobil.bfr.bund.de/cm/343/probiot.pdf
  • 167 de Vrese M. Mikrobiologie, Wirkung und Sicherheit von Probiotika. Monatsschrift Kinderheilkunde 2008; 156: 1063-1069
  • 168 Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30: 492-506
  • 169 Arpaia N, Campbell C, Fan X. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451-455
  • 170 Smith PM, Howitt MR, Panikov N. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569-573
  • 171 Bosi E, Molteni L, Radaelli MG. et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 2006; 49: 2824-2827
  • 172 Brown CT, Davis-Richardson AG, Giongo A. et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 2011; 6: e25792
  • 173 de Goffau MC, Luopajärvi K, Knip M. et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 2013; 62: 1238-1244
  • 174 Kostic AD, Gevers D, Siljander H. et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015; 17: 260-273
  • 175 Davis-Richardson AG, Ardissone AN, Dias R. et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 2014; 5: 678
  • 176 de Goffau MC, Fuentes S, van den Bogert B. et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 2014; 57: 1569-1577
  • 177 Alkanani AK, Hara N, Gottlieb PA. et al. Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes. Diabetes 2015; 64: 3510-3520
  • 178 Vatanen T, Franzosa EA, Schwager R. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018; 562: 589-594
  • 179 Vatanen T, Kostic AD, dʼHennezel E. et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell 2016; 165: 842-853
  • 180 Vatanen T, Franzosa EA, Schwager R. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018; 562: 589-594
  • 181 Gavin PG, Hamilton-Williams EE. The gut microbiota in type 1 diabetes: friend or foe?. Curr Opin Endocrinol Diabetes Obes 2019; 26: 207-212
  • 182 Mishra SP, Wang S, Nagpal R. et al. Probiotics and Prebiotics for the Amelioration of Type 1 Diabetes: Present and Future Perspectives. Microorganisms 2019; 7: 67
  • 183 Uusitalo U, Liu X, Yang J. et al. Association of Early Exposure of Probiotics and Islet Autoimmunity in the TEDDY Study. JAMA Pediatr 2016; 170: 20-28
  • 184 Savilahti E, Härkönen T, Savilahti EM. et al. Probiotic intervention in infancy is not associated with development of beta cell autoimmunity and type 1 diabetes. Diabetologia 2018; 61: 2668-2670
  • 185 Zare Javid A, Aminzadeh M, Haghighi-Zadeh MH. et al. The Effects of Synbiotic Supplementation on Glycemic Status, Lipid Profile, and Biomarkers of Oxidative Stress in Type 1 Diabetic Patients. A Placebo-Controlled, Double-Blind, Randomized Clinical Trial. Diabetes Metab Syndr Obes 2020; 13: 607-617
  • 186 Bianchini S, Orabona C, Camilloni B. et al. Effects of probiotic administration on immune responses of children and adolescents with type 1 diabetes to a quadrivalent inactivated influenza vaccine. Hum Vaccin Immunother 2020; 16: 86-94
  • 187 Zheng M, Zhang R, Tian X. et al. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front Microbiol 2017; 8: 908
  • 188 Wong A, Ngu DYS, Dan LA. et al. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J 2015; 14: 95
  • 189 Singhi SC, Kumar S. Probiotics in critically ill children. F1000Res 2016; 5: 407
  • 190 Zmora N, Zilberman-Schapira G, Suez J. et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 2018; 174: 1388-1405.e21