Synlett 2023; 34(02): 106-123
DOI: 10.1055/a-1965-3028
account

Recent Advances on Radical-Mediated Cyanoalkylation/Cyanation using AIBN and Analogues as the Radical Sources

Han Zhou
,
Yin-Ling Liu
,
Shi Tang
This work was supported by the National Natural Science Foundation of China (NFSC) (Grant No. 21961011, 22271118) and the Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ1020).


Abstract

AIBN (2,2′-azobisisobutyronitrile) and analogues are readily available chemical reagents that are widely used as free-radical initiators of polymer chemistry. Importantly, AIBN and derivatives are also safe and efficient (alkyl)cyano sources for synthesizing cyano-containing scaffolds. In the past decades, synthetic strategies using AIBN and derivatives as radical sources have attracted increasing attention from the synthetic community. This review will provide a valuable tool for understanding the importance of AIBN and derivatives in the area of synthetic chemistry. In this context, we present a comprehensive review that guides readers through the developments in AIBN chemistry over the past five years from several aspects.

1 Introduction

2 Radical Addition onto Alkenes or Alkynes using AIBN as Cyanoalkyl Radical

3 Dehydrogenated, decarboxylated cyano-alkylation by using AIBN and analogues

4 Synthesis of Ketone and its Derivatives with AIBN and Analogues as Carbonyl Source

5 Construction of Multi-ring Skeletons in the Presence of AIBN and Analogues

6 Direct Application as Cyano (CN) Source in Cyanation Reactions

7 Conclusions



Publication History

Received: 30 September 2022

Accepted after revision: 20 October 2022

Accepted Manuscript online:
20 October 2022

Article published online:
28 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Fleming FF. Nat. Prod. Rep. 1999; 16: 597
    • 1b Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 1c Lopez R, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 13170
    • 2a Enders D, Shilvock JP. Chem. Soc. Rev. 2000; 29: 359
    • 2b Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 2c Ping Y, Wang L, Ding Q, Peng Y. Adv. Synth. Catal. 2017; 359
    • 3a Tang S, Li S.-H, Yan W.-b. Tetrahedron Lett. 2012; 53: 6743
    • 3b Tang S, Li S, Zhou D, Zeng H, Wang N. Sci. China Chem. 2013; 56: 1293
  • 4 Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
  • 5 Spaccini R, Pastori N, Clerici A, Punta C, Porta O. J. Am. Chem. Soc. 2008; 130: 18018
  • 6 Guo S, Wan W, Chen C, Chen WH. J. Therm. Anal. Calorim. 2013; 113: 1169
    • 7a Tang S, Li S.-H, Nakao Y, Hiyama T. Asian J. Org. Chem. 2013; 2: 416
    • 7b Tang S, Zhou D, Li S.-H, Wang N.-X. Chem. Res. Chin. Univ. 2013; 29: 678
    • 7c Li Y.-M, Wang S.-S, Yu F, Shen Y, Chang K.-J. Org. Biomol. Chem. 2015; 13: 5376
    • 7d Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
    • 7e Niu B, Xie P, Zhao W.-N, Zhang M, Zhou Y, Feng L, Pittman CU, Zhou A.-H. Synlett 2015; 26: 635
    • 7f Gao F, Yang C, Ma N, Gao G.-L, Li D, Xia W. Org. Lett. 2016; 18: 600
    • 7g Jackman MM, Cai Y, Castle SL. Synthesis 2017; 49: 1758
    • 7h Yang T, Xia W.-J, Shang J.-Q, Li Y, Wang X.-X, Sun M, Li Y.-M. Org. Lett. 2019; 21: 444
    • 8a Tang S, Xu Z.-H, Liu T, Wang S.-W, Yu J, Liu J, Hong Y, Chen S.-L, He J, Li J.-H. Angew. Chem. Int. Ed. 2021; 60: 21360
    • 8b Chen N, Lei J, Wang Z.-C, Liu Y.-J, Sun K, Tang S. Chin. J. Org. Chem. 2022; 42: 1061
    • 8c Liu T, Liu J, He J, Hong Y, Zhou H, Liu Y.-L, Tang S. Synthesis 2022; 54: 1919
    • 8d Wang SW, Yu J, Zhou QY, Chen SY, Xu ZH, Tang S. ACS Sustain. Chem. Eng. 2019; 7: 10154
    • 8e Li Z.-Z, Yu J, Wang L.-N, Chen S.-L, Sheng R.-L, Tang S. Tetrahedron 2018; 74: 6558
    • 8f Tang S, Yuan L, Deng Y.-L, Li Z.-Z, Wang L.-N, Huang G.-X, Sheng R.-L. Tetrahedron Lett. 2017; 58: 329
  • 9 Li Z.-Z, Yu J, Wang L.-N, Chen S.-L, Sheng R.-L, Tang S. Tetrahedron 2018; 74: 6558
  • 10 Li Y, Chang Y, Li Y, Cao C, Yang J, Wang B, Liang D. Adv. Synth. Catal. 2018; 360: 2488
    • 11a Li Q.-L, Tang S, Zhou D, Tang X.-M. Synth. Commun. 2014; 44: 1600
    • 11b Tang S, Li Q.-L, Zhou D, Tang X.-M, Li S.-H. Synth. Commun. 2014; 44: 689
  • 12 Teng F, Yu J.-T, Zhou Z, Chu H.-K, Cheng J. J. Org. Chem. 2015; 80: 2822
  • 13 De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F. Org. Lett. 2007; 9: 2721
  • 14 Rong G, Mao J, Zheng Y, Yao R, Xu X. Chem. Commun. 2015; 51: 13822
  • 15 Wei W, Wen J, Yang D, Guo M, Tian L, You J, Wang H. RSC Adv. 2014; 4: 48535
  • 16 Tang S, Li Z.-H, Zhou D, Deng Y.-L, Ding G.-L, Zhang Q, Liu L.-Y, Li S.-H. Synth. Commun. 2015; 45: 1231
  • 17 Zhang M, Sheng W, Ji P, Liu Y, Guo C. RSC Adv. 2015; 5: 56438
  • 18 Zhou D, Li Z.-H, Li J, Li S.-H, Wang M.-W, Luo X.-L, Ding G.-L, Sheng R.-L, Fu M.-J, Tang S. Eur. J. Org. Chem. 2015; 1606
  • 19 Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 5821
  • 20 Zhang X, Huang H. Org. Lett. 2018; 20: 4998
  • 21 Long R, Huang J, Gong J.-X, Yang Z. Nat. Prod. Rep. 2015; 32: 1584
  • 22 Cao Z.-Z, Nie Z, Yang T, Su M, Li H, Luo W.-P, Liu Q, Guo C.-C. J. Org. Chem. 2020; 85: 3287
  • 23 Song W, Yan P, Shen D, Chen Z, Zeng X, Zhong G. J. Org. Chem. 2017; 82: 4444
  • 24 Kang Q.-Q, Liu Y, Huang X.-J, Li Q, Wei W.-T. Eur. J. Org. Chem. 2019; 7673
  • 25 Bhuyan M, Sharma S, Baishya G. Org. Biomol. Chem. 2022; 20: 1462
  • 26 Li B.-J, Yang S.-D, Shi Z.-J. Synlett 2008; 7: 949
  • 27 Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
  • 28 Tang S, Deng Y.-L, Li J, Wang W.-X, Wang Y.-C, Li Z.-Z, Yuan L, Chen S.-L, Sheng R.-L. Chem. Commun. 2016; 52: 4470
  • 29 Yamaguchi J, Muto K, Itami K. Top. Curr. Chem. 2016; 374: 55
  • 30 Ping Y.-Y, Ding Q.-P, Peng Y.-Y. ACS Catal. 2016; 6: 5989
  • 31 Yang M.-Y, Jiang X.-Y, Shi W.-J, Zhu Q.-L, Shi Z.-J. Org. Lett. 2013; 15: 690
  • 32 Inamoto K, Hasegawa C, Hiroya K, Doi T. Org. Lett. 2008; 10: 5147
    • 33a Tang S, Zhou D, Wang Y.-C. Eur. J. Org. Chem. 2014; 3656
    • 33b Feng Q, Peng K, Huang Z, Yan W, Tang S, Liu Q. J. Power Sources 2015; 280: 703
    • 34a Tang S, Deng Y.-L, Li J, Wang W.-X, Ding G.-L, Wang M.-W, Xiao Z.-P, Wang Y.-C, Sheng R.-L. J. Org. Chem. 2015; 80: 12599
    • 34b Tang S, Li S.-H, Li Z.-H, Zhou D, Sheng R.-L. Tetrahedron Lett. 2015; 56: 1423
    • 34c Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
  • 35 Irudayanathan FM, Lee S. Org. Lett. 2017; 19: 2318
  • 36 Gao B, Xie Y, Yang L, Huang H. Org. Biomol. Chem. 2016; 14: 2399
  • 37 Zheng C, Lu F, Lu H, Xin J, Deng Y, Yang D, Wang S, Huang Z, Gao M, Lei A. Chem. Commun. 2018; 54: 5574
  • 38 Zhang C, Pi J, Chen S, Liu P, Sun P. Org. Chem. Front. 2018; 5: 793
  • 39 Gao Y.-C, Huang Z.-B, Xu L, Li Z.-D, Lai Z.-S, Tang R.-Y. Org. Biomol. Chem. 2019; 17: 2279
  • 40 Wen C, Zhong R, Qin Z, Zhao M, Li J. Chem. Commun. 2020; 56: 9529
  • 41 Zhao M, Qin Z, Zhang K, Li J. RSC Adv. 2021; 11: 30719
  • 42 Yang S, Yan B, Zhong L, Jia C, Yao D, Yang C, Sun K, Li G. Org. Chem. Front. 2020; 7: 2474
  • 43 Tang S, Zhou D, Deng Y, Li Z, Yang Y, He J, Wang Y. Sci. China Chem. 2015; 58: 684
  • 44 Xie Y, Guo S, Wu L, Xia C, Huang H. Angew. Chem. Int. Ed. 2015; 54: 5900
  • 45 Yan X, Liu H, Wei S, Huang H. Org. Lett. 2020; 22: 6794
    • 46a Tang S, Zhou D, Li Z.-H, Fu M.-J, Li J, Sheng R.-L, Li S.-H. Synthesis 2015; 47: 1567
    • 46b Xiao Z.-P, Wang X.-D, Wang P.-F, Zhou Y, Zhang J.-W, Zhang L, Zhou J, Zhou S.-S, Ouyang H, Lin X.-Y, Mustapa M, Reyinbaike A, Zhu H.-L. Eur. J. Med. Chem. 2014; 80: 92
    • 46c Wang XD, Wei W, Deng RC, Zhou SS, Zhang L, Lin XY, Xiao ZP. Chin. J. Org. Chem. 2014; 34: 1773
  • 47 Liu B, Wang CY, Hu M, Song RJ, Chen F, Li JH. Chem. Commun. 2017; 53: 1265
  • 48 Yu J, Sheng HX, Wang SW, Xu ZH, Tang S, Chen SL. Chem. Commun. 2019; 55: 4578
  • 49 Liu Y, Meng Y.-N, Huang X.-J, Qin F.-H, Wu D, Shao Q, Guo Z, Li Q, Wei W.-T. Green Chem. 2020; 22: 4593
  • 50 Janzen EG, Krygsman PH, Lindsay DA, Haire DL. J. Am. Chem. Soc. 1990; 112: 8279
  • 51 Xu H, Liu P.-T, Li Y.-H, Han F.-S. Org. Lett. 2013; 15: 3354
  • 52 Teng F, Yu J.-T, Yang H, Jiang Y, Cheng J. Chem. Commun. 2014; 50: 12139
  • 53 Liu P.-Y, Zhang C, Zhao S.-C, Yu F, Li F, He Y.-P. J. Org. Chem. 2017; 82: 12786
  • 54 Liu L, Wang Z, Fu X, Yan C.-H. Org. Lett. 2012; 14: 5692
  • 55 Tang S, Li ZH, Wang MW, Li ZP, Sheng RL. Org. Biomol. Chem. 2015; 13: 5285
  • 56 Deng Y.-L, Tang S, Ding G.-L, Wang M.-W, Li J, Li Z.-Z, Yuan L, Sheng R.-L. Org. Biomol. Chem. 2016; 14: 9348