B&G Bewegungstherapie und Gesundheitssport 2022; 38(04): 181-186
DOI: 10.1055/a-1871-0043
Wissenschaft

Nutzen und Grenzen mobiler und tragbarer Technologien zur Individualisierung von hochintensivem Intervalltraining in der Bewegungstherapie

Benefits and Limitations of Mobile and Wearable Technologies for the Individualization of High-Intensity Interval Training in Movement Therapy
Peter Düking
1   Lehrstuhl für Integrative und experimentelle Trainings- und Bewegungswissenschaft, Institut für Sportwissenschaft, Julius-Maximilians-Universität Würzburg
,
Billy Sperlich
1   Lehrstuhl für Integrative und experimentelle Trainings- und Bewegungswissenschaft, Institut für Sportwissenschaft, Julius-Maximilians-Universität Würzburg
› Author Affiliations

Zusammenfassung

TherapeutInnen, PatientInnen und SportlerInnen werden in verschiedenen Therapie- und Trainingsmaßnahmen vermehrt mit mobilen und tragbaren Technologien, Smartphone Apps oder sogenannten „point-of-care“ (POCT) Geräten zur Individualisierung von Trainingsprozessen konfrontiert. Obwohl die technologische Entwicklung schnell voranschreitet, können nicht alle verfügbaren Parameter bei (hoch-)intensiver Beanspruchung valide erfasst werden. TherapeutInnen und PatientInnen sollten nur Geräte verwenden, die für den jeweiligen Anwendungsfall und Population valide Daten liefern. Tragbare und mobile Technologien werden beständig weiterentwickelt, und so können heutzutage beispielsweise (bei richtiger Geräteauswahl) die Herzfrequenz am Handgelenk auch bei hochintensiver Beanspruchung sowie die Herzratenvariabilität (bzw. die Pulsratenvariabilität) am Handgelenk unter Ruhebedingungen valide erfasst werden. Mittlerweile können tragbare Technologien wie „Smartwatches“ die maximale Sauerstoffaufnahme ohne Ausbelastungstest erfassen. Deren Validität ist jedoch abhängig von der jeweiligen Leistungsfähigkeit, und diese Technologien scheinen auf individueller Ebene noch verbesserungswürdig. Zur Überprüfung der mittel- und langfristigen Effektivität eines (hochintensiven) Trainingsprozesses ist diese tragbare Technologie zum aktuellen Zeitpunkt nur bedingt anwendbar.

Abstract

Therapists, patients and athletes are increasingly confronted with mobile and wearable technologies, smartphone apps or so-called “point-of-care” (POCT) devices for the individualization of training processes in various therapy and training measures. Although technological development is progressing rapidly, not all available parameters can be validly recorded under (high) intensive conditions. Therapists and patients should only use devices that provide valid data for the respective application and population. Wearable and mobile technologies are constantly evolving. For example, with the right choice of device, the heart rate on the wrist can be validly recorded even under high-intensity stress. The same applies to the heart rate variability (or pulse rate variability) on the wrist under resting conditions. Wearable technologies such as “smartwatches” can now record maximum oxygen uptake without the need of a stress test. However, their validity depends on the invididuals performance level. On an individual level, there is an apparent need of improving these technologies. Currently the application of wearable technologies is limited to checking the medium and long-term effectiveness of the (high-intensity) training process.



Publication History

Received: 12 March 2022

Accepted: 29 April 2022

Article published online:
09 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Stoggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in physiology 2014; 5: 33 DOI: 10.3389/fphys.2014.00033.
  • 2 Messler CF, Holmberg HC, Sperlich B. Multimodal Therapy Involving High-Intensity Interval Training Improves the Physical Fitness, Motor Skills, Social Behavior, and Quality of Life of Boys With ADHD: A Randomized Controlled Study. J Atten Disord 2016; DOI: 10.1177/1087054716636936. doi:10.1177/1087054716636936
  • 3 Schmitt J, Lindner N, Reuss-Borst M. et al. A 3–week multimodal intervention involving high-intensity interval training in female cancer survivors: a randomized controlled trial. Physiological reports 2016; 4 DOI: 10.14814/phy2.12693.
  • 4 Duking P, Holmberg HC, Kunz P. et al. Intra-individual physiological response of recreational runners to different training mesocycles: a randomized cross-over study. European journal of applied physiology 2020; DOI: 10.1007/s00421-020-04477-4.
  • 5 Zinner C, Olstad DS, Sperlich B. Mesocycles with Different Training Intensity Distribution in Recreational Runners. Medicine and science in sports and exercise 2018; DOI: 10.1249/MSS.0000000000001599. doi:10.1249/MSS.0000000000001599
  • 6 Ross R, Goodpaster BH, Koch LG. et al. Precision exercise medicine: understanding exercise response variability. British journal of sports medicine 2019; 53: 1141-1153 DOI: 10.1136/bjsports-2018-100328.
  • 7 Bouchard C, An P, Rice T. et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985) 1999; 87: 1003-1008 DOI: 10.1152/jappl.1999.87.3.1003.
  • 8 Joyner MJ, Lundby C. Concepts About V O2max and Trainability Are Context Dependent. Exercise and sport sciences reviews 2018; 46: 138-143 DOI: 10.1249/JES.0000000000000150.
  • 9 Düking P, Achtzehn S, Holmberg HC. et al. Integrated Framework of Load Monitoring by a Combination of Smartphone Applications, Wearables and Point-of-Care Testing Provides Feedback that Allows Individual Responsive Adjustments to Activities of Daily Living. Sensors (Basel) 2018; 18 DOI: 10.3390/s18051632.
  • 10 Düking P, Fuss FK, Holmberg HC. et al. Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity. JMIR mHealth and uHealth 2018; 6: e102 DOI: 10.2196/mhealth.9341.
  • 11 Düking P, Hotho A, Holmberg HC. et al. Comparison of Non-Invasive Individual Monitoring of the Training and Health of Athletes with Commercially Available Wearable Technologies. Frontiers in physiology 2016; 7: 71 DOI: 10.3389/fphys.2016.00071.
  • 12 Düking P, Giessing L, Frenkel MO. et al. Wrist-Worn Wearables for Monitoring Heart Rate and Energy Expenditure While Sitting or Performing Light-to-Vigorous Physical Activity: Validation Study. JMIR mHealth and uHealth 2020; 8: e16716 DOI: 10.2196/16716.
  • 13 Düking P, Zinner C, Trabelsi K. et al. Monitoring and adapting endurance training on the basis of heart rate variability monitored by wearable technologies: A systematic review with meta-analysis. Journal of science and medicine in sport/Sports Medicine Australia 2021; DOI: 10.1016/j.jsams.2021.04.012.
  • 14 Vybornova A, Polychronopoulou E, Wurzner-Ghajarzadeh A. et al. Blood pressure from the optical Aktiia Bracelet: a 1–month validation study using an extended ISO81060-2 protocol adapted for a cuffless wrist device. Blood pressure monitoring 2021; 26: 305
  • 15 Clavel P, Tiollier E, Leduc C. et al. Concurrent Validity of a Continuous Glucose-Monitoring System at Rest and During and Following a High-Intensity Interval Training Session. International journal of sports physiology and performance 2022; 1: 1-7
  • 16 Zinner C, Sperlich B. Definition und Steuergrößen von (Hoch-) intensivem Intervalltraining in Bewegungstherapie & Gesundheitssport. B&G Bewegungstherapie Und Gesundheitssport 2019; 35: 93-99
  • 17 Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological measurement 2007; 28: R1
  • 18 Pelaez EA, Villegas ER. LED power reduction trade-offs for ambulatory pulse oximetry. In, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: IEEE; 2007: 2296–2299
  • 19 Wahl Y, Duking P, Droszez A. et al. Criterion-Validity of Commercially Available Physical Activity Tracker to Estimate Step Count, Covered Distance and Energy Expenditure during Sports Conditions. Frontiers in physiology 2017; 8: 725 DOI: 10.3389/fphys.2017.00725.
  • 20 Vesterinen V, Nummela A, Heikura I. et al. Individual Endurance Training Prescription with Heart Rate Variability. Medicine and science in sports and exercise 2016; 48: 1347-1354 DOI: 10.1249/MSS.0000000000000910.
  • 21 Baynard T, Goulopoulou S, Sosnoff RF. et al. Cardiovagal modulation and efficacy of aerobic exercise training in obese individuals. Medicine and science in sports and exercise 2014; 46: 369-375 DOI: 10.1249/MSS.0b013e3182a66411.
  • 22 Dong JG. The role of heart rate variability in sports physiology. Experimental and therapeutic medicine 2016; 11: 1531-1536 DOI: 10.3892/etm.2016.3104.
  • 23 Plews DJ, Laursen PB, Stanley J. et al. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med 2013; 43: 773-781 DOI: 10.1007/s40279-013-0071-8.
  • 24 Singh N, Moneghetti KJ, Christle JW. et al. Heart Rate Variability: An Old Metric with New Meaning in the Era of using mHealth Technologies for Health and Exercise Training Guidance. Part One: Physiology and Methods. Arrhythm Electrophysiol Rev 2018; 7: 193-198 DOI: 10.15420/aer.2018.27.2.
  • 25 Düking P, Engel F, Mastek H. et al. Nutzen und Grenzen der Täglichen Steuerung des Ausdauertrainings mittels Herzratenvariabilität. Leistungssport. 2022 In Press
  • 26 Kinnunen H, Rantanen A, Kentta T. et al. Feasible assessment of recovery and cardiovascular health: accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiological measurement 2020; 41: 04NT01 DOI: 10.1088/1361-6579/ab840a.
  • 27 Schafer A, Vagedes J. How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. International journal of cardiology 2013; 166: 15-29 DOI: 10.1016/j.ijcard.2012.03.119.
  • 28 Ruiz JPM, Rubio-Arias JÁ, Clemente-Suarez VJ. et al. Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis. Applied Sciences 2020; 10: 8532
  • 29 Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and science in sports and exercise 2000; 32: 70-84
  • 30 Ltd G. Forerunner (r) 245/245 Music Benutzerhandbuch. In; 2019
  • 31 Düking P, Van Hooren B, Sperlich B. Assessment of Peak Oxygen Uptake with a Smartwatch and its Usefulness for Training of Runners. International journal of sports medicine. 2022
  • 32 Molina-Garcia P, Notbohm HL, Schumann M. et al. Validity of Estimating the Maximal Oxygen Consumption by Consumer Wearables: A Systematic Review with Meta-analysis and Expert Statement of the INTERLIVE Network. Sports Medicine 2022. 1–21