Angewandte Nuklearmedizin 2023; 46(01): 13-19
DOI: 10.1055/a-1802-8602
Dosimetrie
Übersicht

Bildgebung, Kinetik, Quantifizierung

Imaging, kinetics, quantification
Anja Braune
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus
an der Technischen Universität Dresden, Dresden, Deutschland
,
Oliver S. Großer
2   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Deutschland
3   Forschungscampus STIMULATE, Otto-von-Guericke Universität, Magdeburg, Deutschland
› Author Affiliations

Zusammenfassung

Nuklearmedizinische tomografische Verfahren wie die Positronen-Emissions-Tomografie (PET) und Single-Photonen-Emissions-Computertomografie (SPECT) werden in einem quantitativen Setting genutzt (z. B. die PET) bzw. sind, wie im Fall der SPECT, aufgrund der Erfordernisse nuklearmedizinischer Therapien an eine bildbasierte Dosimetrie, als quantitative bildgebende Modalität zu etablieren. Für die quantitative Analyse der bereitgestellten Bilddaten existieren unterschiedliche Konzepte. Ausgehend von der Quantifizierung dynamischer Aufnahmen mittels der Zeitaktivitätskurve wird für die kinetische Modellierung die Patlak-Methode vorgestellt. Verschiedene Methoden zur Auswertung statischer PET-Messungen, wie der Standardized Uptake Value (SUV) und das Standardized Uptake Ratio (SUR), werden diskutiert. Für die SPECT werden exemplarisch verschiedene methodische Entwicklungen auf dem Weg zur quantitativen Modalität adressiert.

Abstract

Nuclear medicine tomographic imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used in a quantitative setting (e. g., PET) or, as in the case of SPECT, must be established as a quantitative imaging modality due to the requirements of nuclear medicine therapies for image-based dosimetry. Different concepts exist for the quantitative analysis of the imaging data provided. Starting with the quantification of dynamic images using the time-activity curve, Patlak's method is presented as an established method for kinetic modeling. Different methods for the evaluation of static PET measurements like the standardized uptake value (SUV) as well as the standardized uptake ratio (SUR) will be discussed. For SPECT, different methodological developments on the way to quantitative modality are addressed as examples.



Publication History

Article published online:
21 March 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literaturverzeichnis

  • 1 Farncombe T, Celler A, Noll D. et al. Dynamic SPECT imaging using a single camera rotation (dSPECT). IEEE T Nucl Sci 1999; 46: 1055-1061
  • 2 Kupitz D, Wetz C, Wissel H. et al. Software-assisted dosimetry in peptide receptor radionuclide therapy with 177Lutetium-DOTATATE for various imaging scenarios. Plos One 2017; 12: e0187570
  • 3 Sokoloff L, Reivich M, Kennedy C. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28: 897-916
  • 4 Patlak CS, Blasberg RG, Fenstermacher JD. Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. J Cereb Blood Flow Metabolism 1983; 3: 1-7
  • 5 Hawkins RA, Choi Y, Huang SC. et al. Quantitating tumor glucose metabolism with FDG and PET. J Nucl Med 1992; 33: 339-344
  • 6 Kim CK, Gupta NC, Chandramouli B. et al. Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med 1994; 35: 164-167
  • 7 Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993; 189: 847-850
  • 8 Kaalep A, Sera T, Rijnsdorp S. et al. Feasibility of state of the art PET/CT systems performance harmonisation. EHNMMI 2018; 45: 1344-1361
  • 9 Rogasch JM, Hofheinz F, Lougovski A. et al. The influence of different signal-to-background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time-of-flight reconstruction. EJNMMI Phys 2014; 1: 12
  • 10 van den Hoff J, Oehme L, Schramm G. et al. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Res 2013; 3: 77
  • 11 Hofheinz F, Bütof R, Apostolova I. et al. An investigation of the relation between tumor-to-liver ratio (TLR) and tumor-to-blood standard uptake ratio (SUR) in oncological FDG PET. EJNMMI Res 2016; 6: 19
  • 12 van den Hoff J, Lougovski A, Schramm G. et al. Correction of scan time dependence of standard uptake values in oncological PET. EJNMMI Res 2014; 4: 18
  • 13 Wernick N, Aarsvold M. Emission Tomography: The Fundamentals of PET and SPECT. San Diego: Elsevier Academic Press; 2004
  • 14 DIN 6855-2:2013 Konstanzprüfung nuklearmedizinischer Messsysteme –. 2022: 1-20
  • 15 Sgouros G, Bodei L, McDevitt MR. et al. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 2020; 19: 589-608
  • 16 Sgouros G, Bolch WE, Chiti A. et al. ICRU REPORT 96, Dosimetry-Guided Radiopharmaceutical Therapy. J ICRU 2021; 21: 1-212
  • 17 Association NEM. NEMA NU 1-2018 - Performance Measurements of Gamma Cameras. J E E 2019; 45: 1046-1046
  • 18 Tran-Gia J, Lassmann M, Kuwert T. et al. Quantitative Bildgebung für die Dosimetrie mit SPECT/CT. Der Nuklearmediziner 2018; 41: 24-36
  • 19 Großer OS, Kupitz D, Kreißl MC. Protokoll- und Dosisoptimierung der CT in der Hybridbildgebung für Schwächungskorrektur und strukturelle Korrelation. Angewandte Nuklearmedizin 2022; 45: 210-216
  • 20 Ogawa K, Harata Y, Ichihara T. et al. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE T Med Imaging 1991; 10: 408-412
  • 21 Kupitz D, Wissel H, Wuestemann J. et al. Optimization of SPECT/CT imaging protocols for quantitative and qualitative 99mTc SPECT. EJNMMI Phys 2021; 8: 57
  • 22 Ljungberg M, Celler A, Konijnenberg MW. et al. MIRD Pamphlet No. 26: Joint EANM/MIRD Guidelines for Quantitative 177Lu SPECT Applied for Dosimetry of Radiopharmaceutical Therapy. J Nucl Med 2016; 57: 151-162
  • 23 Dewaraja YK, Ljungberg M, Green AJ. et al. MIRD Pamphlet No. 24: Guidelines for Quantitative 131I SPECT in Dosimetry Applications. J Nucl Med 2013; 54: 2182-2188
  • 24 Minarik D, Gleisner KS, Ljungberg M. Evaluation of quantitative 90 Y SPECT based on experimental phantom studies. Phys Med Biol 2008; 53: 5689-5703
  • 25 Visvikis D, Lambin P, Mauridsen KB. et al. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation. EJNMMI 2022; 49: 4452-4463
  • 26 Sandström M, Garske U, Granberg D. et al. Individualized dosimetry in patients undergoing therapy with 177Lu-DOTA-D-Phe1-Tyr3-octreotate. EJNMMI 2010; 37: 212-225
  • 27 Vandervoort E, Celler A, Harrop R. Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT. Physics in Medicine and Biology 2007; 52: 1527-1545
  • 28 Slomka PJ, Dey D, Duvall WL. et al. Advances in Nuclear Cardiac Instrumentation with a View Towards Reduced Radiation Exposure. Curr Cardiol Rep 2012; 14: 208-216
  • 29 Rogasch JMM. Digitale SPECT und PET: Klinische Konsequenzen. Angewandte Nuklearmedizin 2022; 45: 227-239